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The increasing use of smart homes has led researchers to focus on load 
management and consumption response in the household sector. This paper 
proposes a method for minimizing electricity consumption costs in a smart 
home with programmable appliances that can be controlled. The study 
examines consumption management and load response in a smart home, 
taking into account real-time pricing. The proposed models offer a new 
framework for planning the time of use of appliances, taking into account the 
limitations and operation of household equipment. The study proposes four 
mathematical models of the problem, which are of the nonlinear integer 
programming (NLIP) and are solved using GAMS software. In addition, the 
Branch and Bound (B&B) algorithm developed in Python is used in the two 
proposed models for daily scheduling of smart appliances and for scheduling 
longer time periods, such as a week, a month, or even a year. In both types, 
one model is connected only to grid power, and the other model is connected 
to both the grid and photovoltaic sources. Numerical studies for the four 
different models show the effectiveness of the proposed models in smart 
home planning. Furthermore, this study investigates the potential of using 
B&B to solve the proposed models. The results demonstrate the effectiveness 
of the proposed method in reducing energy costs, while also considering the 
limitations and performance of household equipment. In addition, by 
comparing the results obtained from the proposed models, this article 
examines the amount of investment required to purchase solar panels in 
different studies.  
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1. Introduction 

The importance of sustainable energy for economic growth and development is widely 
recognized; however, energy challenges persist in developing countries despite policymakers' efforts 
to bridge the gap between energy demand and supply [1]. With the demand for electricity increasing 
dramatically due to economic development, population growth, and advancements in technology, 
the need for more energy in the future is certain. As underdeveloped countries continue to strive for 
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progress, the need for more energy in the future remains undeniable [2]. In recent years, there has 
been a significant shift toward urbanization, with more than 60% of the global population projected 
to reside in urban areas by 2030 [3]. However, rapid urbanization has led to the residential sector 
becoming the largest electricity consumer, resulting in a corresponding increase in fuel consumption 
and significant negative environmental impacts. Studies indicate that the domestic sector accounts 
for an average of 35% of energy demand due to the rising standard of living worldwide [4]. Energy is 
a crucial aspect of our daily lives, and currently, the global energy market is predominantly dominated 
by fossil fuels and non-renewable energy sources, which have significant economic and 
environmental impacts. To address this issue, researchers are focusing on reducing energy 
consumption, particularly in residential loads, and diversifying energy sources to include renewable 
energy sources [5]. Another approach being researched is demand-side participation, which involves 
the active involvement of consumers in managing energy use and production [6]. 

As electricity demand rises, meeting peak-hour demand becomes increasingly challenging, and 
implementing demand response programs can help manage energy supply and demand during these 
periods [7]. At the residential level, energy costs can be reduced by using smart price-based (demand 
response) control concepts [3]. The optimal use of microgrids is particularly important for the 
efficient and economic management of energy resources. The integration of renewable energy 
sources, such as solar panels and wind turbines, can help meet this demand while reducing 
greenhouse gas emissions. The dependence on oil and its surging prices have further accelerated the 
adoption of renewable energy sources in many countries over the past few decades. The urgency to 
reduce greenhouse gas emissions to prevent climate change adds further significance to the use of 
sustainable energy sources [8]. Distributed renewable energy sources can be utilized in buildings as 
a sustainable alternative [9]. Over the years, researchers and academics have aimed to address 
energy challenges by exploring the use of renewable energy sources and smart grid technology to 
reduce energy demand and ensure the reliability of energy supply in the building sector. 

To maintain a connected and smart home, a stable, reliable, and affordable energy source is 
essential [10]. Therefore, the integration of renewable energy sources, such as solar panels and wind 
turbines, can help meet this demand while reducing greenhouse gas emissions. Home Energy 
Management Systems (HEMS) and smart homes have been introduced in the residential sector to 
reduce dependency on fossil fuels. Smart homes offer residents advanced monitoring and control of 
building performance through internet-connected devices. By optimizing the management of 
controllable household appliances and utilizing distributed production power from renewable energy 
sources and electric vehicles, smart homeowners can reduce their energy dependence on the power 
grid and lower their electricity bills [11]. Smart homes can also participate in demand-side 
management (DSM) programs, contributing to the decentralization of electricity. Each home can 
participate in the smart grid as both a supplier and a consumer of energy. Moreover, greater 
participation of smart homes in demand-side management (DSM) programs can further contribute 
to the decentralization of electricity [12]. Home Energy Management Systems (HEMS) are rapidly 
gaining popularity worldwide as small-scale renewable energy and energy storage become more 
viable [13]. 

Smart homes are a small but important energy sector with significant potential to implement 
effective energy policies, where humans are the primary decision-makers in the home energy 
management dilemma. Therefore, human emotions and desires play a vital role in the daily decisions 
of the end user [14]. Smart homes are expected to bring about significant changes in people's 
lifestyles. By adjusting the timing of residents' electricity consumption, smart homes can enhance 
electricity load flexibility and offer significant potential for electricity demand response [15]. The 
energy consumption of a smart home can be intelligently optimized, ensuring not only the minimum 
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cost of energy procurement but also the convenience of the consumer [16]. Household electrical 
appliances can be divided into two categories in smart homes: non-programmable and 
programmable. Non-programmable appliances, such as televisions, computers, and lighting, are not 
responsive to time-varying prices. On the other hand, programmable appliances, such as washing 
machines, dishwashers, and clothes dryers, are responsive, and their operating times can be 
adjusted. The function of a smart home is to provide a schedule for the use of controllable household 
appliances. Smart home energy management systems help the distribution network operate more 
efficiently and reliably and enable the effective integration of distributed renewable energy sources. 
These systems rely on robust prediction, optimization, and control/scheduling algorithms that can 
manage the uncertain nature of renewable energy demand and generation [17]. Solar energy is the 
most readily accessible form of clean and renewable energy with tremendous potential worldwide. 
Solar home systems (SHS) utilizing solar panels on urban rooftops and in remote rural areas are 
rapidly expanding [18]. SHS has emerged as a popular solution for addressing energy access 
challenges in areas with limited or no electricity service [19]. Developing a smart home automation 
system with renewable energy is a sustainable approach. 

It can offer several benefits, including reducing reliance on traditional fossil fuel-generated 
electricity, lowering the carbon footprint, and optimizing energy usage, which leads to increased 
energy efficiency and cost savings. By participating in demand-side management programs, 
homeowners can also contribute to the centralization of electricity and help balance the grid by 
reducing peak demand. Overall, integrating renewable energy and smart home automation systems 
can lead to a more sustainable and efficient energy future. Developing a smart home automation 
system that incorporates renewable energy is a sustainable approach. The objective of this research 
is to develop two types of mathematical models for a smart home. The first model utilizes only grid 
power, while the second model utilizes both solar energy and grid power, enabling efficient planning 
of home appliances and reducing energy costs. 

Household electrical appliances are significant contributors to energy consumption in 
households, making it crucial for consumers to choose energy-efficient appliances, plan their usage 
effectively, and ensure their optimal energy efficiency. Most existing mathematical models provide 
schedules for the next 24 hours, assuming that some devices are used daily while others are used 
less frequently (e.g., two or three times a week). However, planning controllable devices should be 
investigated over a longer operational period, such as at least one week, highlighting the importance 
of incorporating both short-term and long-term planning approaches [20]. Therefore, in this paper, 
we propose two models for appliance scheduling in smart homes, which are divided into two parts: 
one for daily scheduling of smart appliances and the other for weekly scheduling. Both models are 
implemented using the CPLEX solver in GAMS software. Additionally, we propose a method that 
utilizes a B&B-based operational and research approach for appliance scheduling to optimize energy 
resource use in dynamic pricing environments and minimize total electricity consumption costs. 

The development of a smart home automation system with renewable energy is a sustainable 
approach that offers several benefits, including reducing reliance on traditional fossil fuel-generated 
electricity, lowering the carbon footprint, and optimizing energy usage, ultimately leading to 
increased energy efficiency and cost savings. 

 The remainder of the paper is organized as follows. Section 2 presents a literature review 
relevant to the topic. Section 3 describes the problem and formulates the mathematical model. The 
solution algorithm is presented in Section 4. Section 5 presents the results from implementing case 
studies and numerical model examples. Finally, Section 6 presents the main conclusions and future 
research directions. 
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2. Literature Review 
The demand for electricity increases dramatically every year. This increase in energy demand is 

attributed to economic development, population growth, and technological advancements in 
improving equipment and introducing new technologies. Therefore, in the future, more energy will 
definitely be needed for the development of underdeveloped countries [2]. With future demand 
forecasts, energy generation and distribution can be optimized to meet the needs of a growing 
population. However, predicting the demand of individual households is a challenging task due to the 
diversity of energy consumption patterns [21]. Home Energy Management Systems (HEMS) play a 
crucial role in regulating power flow within the smart grid. The primary goal of HEMS is to optimize 
energy consumption and reduce electricity costs, a mechanism that benefits both the user and the 
operation of appliances [22, 23]. By understanding the concept of home and people's well-being 
through a user-oriented approach, it becomes clear that home appliances and smart home systems 
should be designed as mediators between the home and energy consumption [24]. Reference [25] 
presents an analysis of the smart home energy management system, aiming to identify current trends 
and challenges for future improvement. Samadi et al., presented an algorithm that maximizes the 
overall profit of consumers and minimizes costs, considering the limitation that consumption should 
be lower than the level of energy production [26]. Dieckmann et al., [27] investigated potential 
changes in peak consumption and electricity costs caused by smart homes by developing a multi-
objective smart home integrated management model, which considers the behavioral heterogeneity 
of household appliances and electricity consumption. 

 Renewable energies in today's electricity systems enhance the positive performance of energy 
sources while eliminating greenhouse gas emissions. To manage fluctuations in electricity 
production, current policies focus on expanding renewable energies and planning production 
capacities [27]. The Smart Home Renewable Energy Management (SHREM) system is proposed to 
provide high-efficiency and high-quality solar panels for power generation [28]. In Africa, where the 
continuous supply of electricity remains a challenge, the use of solar photovoltaic technologies as the 
energy source for smart homes will address this challenge and enable the development of smart 
homes [29]. As the final link in an integrated future energy system, the smart home energy 
management system (HEMS) is crucial for managing the smart use of home appliances, renewable 
energy sources (RES), and energy storage systems (ESS) [30]. 

Perhaps the research by Chen et al., [31] can be considered the first study in this field to present 
a multi-period integer linear mathematical model. In this research, the authors considered the cost 
of solar cell installation as a fixed value in the objective function. In the proposed model, the energy 
requirement of the house is first supplied through the electricity grid and PV systems. Reference [32] 
of a smart residential community shows that dynamic pricing encourages household consumers to 
shift flexible loads from morning and evening to noon or early morning, effectively improving the 
matching between PV generation and residential electricity demand. Study [33] presents the 
conceptualization and implementation of a smart home system that uses solar panels to maximize 
the use of renewable energy. 

This system is designed to minimize the carbon footprint and energy consumption. In 2017, 
AlSkaif et al., [34] presented a MILP mathematical model for a house considering PV and energy 
storage, without selling excess PV electricity to the grid. The model was based on demand 
characteristics for different household classes and annual periods in Spain, resulting in a reduction of 
approximately 68%. In 2020, Elkazaz et al., [35] presented a MIP model for managing home energy 
consumption that considers PV and energy storage, aiming to minimize daily energy costs and reduce 
energy loss. The model presented by Sharda et al., [36] incorporates scheduling with PV integration 
and various constraints, ultimately developing an independent, efficient, and real-time energy 
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scheduling system that utilizes forecasted PV power for different pricing scenarios. In the proposed 
model, the battery for energy storage is not considered. Khezri et al., [37] provided a comprehensive 
and critical review of the effective parameters in the optimal planning process of solar PV and battery 
storage systems for grid-connected residential sectors. These parameters include economic and 
technical data, objective functions, energy management systems, design constraints, optimization 
algorithms, and electricity pricing programs. 

Elazab et al., [20] proposed a new offline intelligent isolated house load scheduling scheme to 
match the characteristics of houses in developing countries. In this work, detailed models of smart 
home resources and appliances are presented. A daily load scheduling scheme is proposed that 
considers the weekly and daily schedules of users to meet the demands of house occupants. The 
proposed scheme is based on the MILP (Mixed-Integer Linear Programming) optimization technique 
to introduce a simple and cost-effective load scheduling scheme for such remote and complex 
communities. Upon reviewing the literature and related sources, it becomes clear that most studies 
have focused on analyzing daily energy consumption, particularly in countries where energy prices 
fluctuate dynamically throughout the day. However, in some countries, energy prices remain 
constant for extended periods, such as a week, a month, or even a year. As a result, this study 
presents the development of two types of mathematical models to optimize the scheduling of smart 
home appliances, thereby reducing energy consumption and costs. 

In study [38], a novel data-driven framework for smart home energy management, integrating 
electricity demand forecasting and user behavior recognition to maximize profit while ensuring user 
comfort. Using Long Short-Term Memory (LSTM) and association rule mining, the approach predicts 
day-ahead consumption and extracts user appliance usage patterns. A MIP model then schedules 
flexible appliances based on these patterns and energy demand. Simulations demonstrate the 
framework’s effectiveness in balancing cost savings and user preferences. 

The first type is designed to optimize the daily scheduling of smart appliances, while the second 
type extends the approach to a weekly basis, allowing for more comprehensive planning. Typically, 
two main approaches to energy optimization have been observed in previous research. The first 
approach involves studying homes that are solely connected to the electricity grid to meet their 
energy requirements. The second approach focuses on homes that are connected to both the 
electricity grid and solar panels to supply energy. It is also noteworthy that this research considers 
both scenarios: homes connected only to the electricity grid and homes connected to both the grid 
and solar panels. This is because the growing use of solar panels for residential energy generation is 
becoming increasingly popular, and it is important to consider the impact of solar energy on the 
optimization of smart home appliance scheduling. This study incorporates both scenarios and 
presents a total of four models. The first model is only connected to the power grid and is responsible 
for optimizing the daily scheduling of smart home appliances. The second model is connected to both 
the power grid and solar panels and is responsible for optimizing the daily scheduling of smart home 
appliances. The third model is similar to the first model but is designed to optimize the schedule on 
a weekly basis. Finally, the fourth model is based on the weekly schedule of the second model. 

 
3. Problem Definition 

Most studies on smart homes have focused on a 24-hour time frame with real-time pricing [39]. 
This is largely because energy prices in most countries around the world are only provided to 
consumers for the next 24 hours. However, this approach assumes that all controllable appliances 
are turned on within a single 24-hour period, which is not a realistic representation of how 
households consume energy. For instance, some appliances, such as washing machines, are typically 
used only twice a week. Therefore, using a 24-hour program as a basis for predicting a household's 
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annual energy consumption is not feasible. To address this limitation, a study [40] proposes a weekly 
pattern to reduce the energy consumption of a smart home, which can be used to predict the home's 
annual energy consumption. By incorporating a weekly pattern into the mathematical model, a more 
accurate representation of energy consumption in a household can be obtained. 

Unfortunately, without knowledge of energy prices for the upcoming period, such as a week, 
planning for energy consumption beyond a 24-hour period is difficult. In this research, we present 
both a daily mathematical model and a multi-period mathematical model that provides the cost of 
energy consumption for an extended period, along with the scheduling of intelligent appliances for 
the considered periods. With the necessary data provided to the model, it is capable of scheduling 
smart devices and calculating the cost of energy consumption for periods ranging from one week to 
one year. Although obtaining the necessary data for a month or a year may be challenging, the 
presented model is capable of accurately calculating energy consumption costs for any given time 
period. Another method to reduce energy consumption is through the use of renewable energy 
sources, particularly photovoltaic solar cells. However, in some countries, the use of solar panels may 
not be cost-effective for households, as the installation costs are often prohibitively high. To address 
this, two models for planning smart home appliances have been presented. The first model is 
designed for countries where households cannot use solar panels, and it can be used to program 
controllable appliances. 

The second model is designed for countries where solar panel installation is cost-effective, and it 
involves connecting the smart home to solar panels to meet the house's energy needs as much as 
possible. A PV module comprises several solar cells that are connected and enclosed in a stable unit. 
However, solar panels also come with additional costs, such as maintenance, repairs, cleaning, and 
depreciation, which have not been considered in the decisions made in these two models. 
Nevertheless, by comparing the values obtained from the two models in different scenarios, it is 
possible to calculate the approximate prices required for the installation and commissioning of solar 
panels. This paper proposes four models that combine daily and periodic models, as well as models 
for the use and non-use of renewable energy. 

The parameters and variables used in the model are introduced in Table 1. 
 

Table 1  
Parameters and variables are used in the proposed models 
 Sets and indices 

I Set of smart home appliances indexed by i (i = 1, 2, …, 15)   

Ji Set of virtual processes for smart home appliance i indexed by j (j = 1, 2, …, 8)   

T 
d 

Set of time intervals indexed by t and t’(t, t’ = 1, 2, …, 96)   
Set of day interval indexed by d (d=1, 2, ….,7) 

 Parameters 

𝑐𝑡 Energy price in time t (dollars per kWh)  

∆𝑡 The length of time intervals (i.e., 0.25 hours)  

𝑃𝑡
𝑁  Total power consumption of uncontrollable appliances that must be on at time t (W)  

𝑃𝑡
𝐶  Power consumption of the jth process of the ith responsive home appliances (W)  

𝑃𝑡
𝑚𝑎𝑥  Maximum power is drawn from the grid at time t (W)  

𝑇 𝑖
𝑜𝑓𝑓

 

𝑆𝑡𝑖 

Maximum time delay between two consecutive processes of ith responsive appliance 
 Time of starting the use of the ith appliance  

𝐸𝑛𝑖 Time of ending the use of the ith appliance  

𝑃𝑉𝑡 Power generation capacity of the solar cell at time t (W)  
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Table 1  
Continued 

 Weekly parameters 

𝑐𝑡d 

𝑃𝑡𝑑
𝑁   

𝑃𝑡𝑑
𝐶   

𝑃𝑡𝑑
𝑚𝑎𝑥   

𝑃𝑉𝑡d  

Energy price in time t (dollars per kWh)  
Total power consumption of uncontrollable appliances that must be on at time t (W)  
Power consumption of the jth process of the ith responsive home appliances (W)  
Maximum power is drawn from the grid at time t (W)  
Power generation capacity of the solar cell at time t (W)  

 Variables 

𝑋𝑖𝑗𝑡  
Binary variable determining whether the jth process of the ith smart appliance is on at 
time t (𝑋𝑖𝑗𝑡= 1) or not (𝑋𝑖𝑗𝑡 = 0) (daily) 

𝑋𝑖𝑗𝑡d 
Binary variable determining whether the jth process of the ith smart appliance is on at 
time t (𝑋𝑖𝑗𝑡d = 1) or not (𝑋𝑖𝑗𝑡d = 0) (weekly) 

 

3.1 Daily Scheduling Models 
3.1.1 Model Number 1 

In model 1, the energy management system is responsible for planning the time of use of 
household equipment based on the real-time prices (predicted) and observing the limitations on the 
operation of household equipment. The objective is to minimize electricity consumption costs while 
ensuring that the equipment operates within the specified limits. The assumptions of the daily 
problem are as follows: 

i. The parameters are definite. 
ii. The pricing is dynamic, and the calculation of costs is based on the tariffs determined by 

the consumer during a 24-hour period. 
iii. Both types of household appliances are considered, i.e., programmable and responsive to 

time-varying prices, as well as non-programmable and non-responsive to time-varying 
prices. 

iv. The smart house is connected to the electricity grid, but when it is connected to the solar 
cell, it does not sell to the grid. 

v. The smart house connected to the solar cell is not equipped with an energy storage 
system, and if the smart house is not used, the generated energy is wasted. 

vi. The number of smart devices is considered to be 15, and the number of virtual processes 
is 8. 

The planning time frame is assumed to be one day and one night. According to the time frame of 
announcing the price of electricity, every 24 hours of the day and night is divided into 96 equal parts 
(quarters of an hour). Based on these assumptions, a set of smart appliances can be programmed to 
minimize the consumer's payment cost. The energy management system selects the operating times 
of smart appliances to optimize the cost of electrical energy.  

 

(1) min ∑ ct .Δt 

96

t=1

( 𝑃𝑡
𝑁+ ∑ ∑ 𝑃𝑡

𝑐
∙ 
𝑋𝑖𝑗𝑡)

8

𝑗=1

15

𝑖=1

 

 S.t 

(2) ∑ 𝑋𝑖.𝑗.𝑡

𝐸𝑛𝑖

𝑡=𝑆𝑡𝑖

=1                                              ∀ i.j 



Spectrum of Operational Research 

Volume 3, Issue 1 (2026) 238-260 

 

245 
 
 
 

(3) 𝑋𝑖.𝑗+1.𝑡 ≤ ∑ 𝑋𝑖.𝑗.𝑡′                                     ∀𝑖. 𝑗. 𝑡          

𝑡−1

𝑡′=1

 

(4) 𝑋𝑖.𝑗.𝑡 ≤ ∑ 𝑋𝑖.𝑗+1.𝑡′                             ∀𝑖. 𝑗. 𝑡           

𝑡+𝑇𝑜𝑓𝑓
𝑖 /∆t

𝑡′=𝑡+1

 

(5) (𝑃𝑡
𝑁+ ∑ ∑ 𝑃𝑡

𝑐
∙ 
𝑋𝑖𝑗𝑡)

8

𝑗=1

15

𝑖=1

) ≤ Pt
max        .   ∀ t 

 

Equation (1) represents the objective function to minimize the electric energy cost of the smart 
home. Equation (2) represents the limit that the user wants the electrical device to work within a 
specified time range. For this reason, the user specifies the time range [𝑆𝑡𝑖 . 𝐸𝑛𝑖] (start time and end 
time) for each device. It is important to note that increasing the time interval can lead to a better 
solution to the problem (from the perspective of cost reduction), but it can also affect the comfort of 
the user. To ensure the correct operation of the smart device, it is necessary (Relation 3) to arrange 
the virtual processes of each smart device according to its load profile. Therefore, if the jth process 

of smart equipment i is performed in time interval, t (𝑋𝑖.𝑗.𝑡 = 1), the next process must be performed 

in a time interval greater than t(𝑋𝑖.𝑗.𝑡′ = 1. 𝑡′ > 𝑡). As stated in the definition of the objective 

function, Toff
i    indicates the allowed interval between the virtual process j and j +1 related to the 

smart device i. Considering that between the processes (j) of the i-th smart device, there should not 

be a break longer than the time Toff
i , so the following condition (Relation 4) should be taken into 

account. To prevent congestion in the distribution system, it may be necessary to limit the maximum 
power that can be absorbed from the network. This limit is typically set in accordance with the 
contract between the customer and the electricity company and is generally variable with time. 
Equation (5) models this limit, and the total power consumption of both intelligent and non-
intelligent equipment in each time period must not exceed the maximum power that can be absorbed 
from the network.  

This model was originally presented by [40], but in this research, we have made fundamental 
changes to constraints numbers 3 and 4. These changes have increased the speed of the model 
execution, and the order of execution of virtual activities will be properly regulated. 

 
3.1.2 Model Number 2 

To calculate the energy consumption of the smart home when using a PV solar cell, the solar cell 
generated power (𝑃𝑣𝑡) is added to Model 1. The smart home is connected to the network, and if the 
solar cell power is insufficient to meet the energy requirements, the smart home can obtain 
additional energy from the network under real-time pricing. This enables the energy management 
system to optimize the utilization of PV solar cell power and grid power, thereby minimizing 
electricity consumption costs while meeting the energy requirements of the smart home. The 
presented model will be as follows: 

 

(6) 
 

min ∑ ct .Δt 

96

t=1

(max(( 𝑃𝑡
𝑁+ ∑ ∑ 𝑃𝑡

𝑐
∙ 
𝑋𝑖𝑗𝑡 − 𝑃𝑣𝑡),0))

8

𝑗=1

15

𝑖=1

 

 S.t 

 (2) – (4) 
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(7) (𝑃𝑡
𝑁+ ∑ ∑ 𝑃𝑡

𝑐
∙ 
𝑋𝑖𝑗𝑡)

8

𝑗=1

15

𝑖=1

) ≤ Pt
max+ Pvt                     ∀ t 

 
The energy management system optimizes the cost of electrical energy in the solar smart home 

by determining the optimal operation times for smart appliances (Equation (6)). Constraints 2, 3, and 
4 are shared with this objective function, while constraint (7) is added to account for solar cell power. 
Since the smart house model with the solar cell is nonlinear because of the minimax form of the 
objective function (Equation (6)), it can be linearized by defining the new variable 𝑍𝑡.  

In the below model, Equation (8) represents the linear objective function by using variable 𝑍𝑡 
which, in addition to constraints (2), (3), (4), and (7), includes two new constraints, (9) and (10), to 
address the problem. Variable X is a binary variable, which is expressed in Equation (11). The 
proposed model is a linear IP model that advanced solvers can easily solve. 

Linearized of model (2):  
 

(8) min       ∑ ct .Δt .96
t=1 Zt  

 S.t 
 (2) – (4), (7) 

(9) 𝑍𝑡≥𝑃𝑡
𝑁+ ∑ ∑ 𝑃𝑡

𝑐
∙ 
𝑋𝑖𝑗𝑡 −

8

𝑗=1

15

𝑖=1

PVt.   ∀ t  

(10) 𝑍𝑡 ≥ 0   .           ∀ 𝑡  

(11) 𝑋𝑖.𝑗.𝑡 =  {0.1}     ∀ 𝑖. 𝑗. 𝑡  

 
3.2 Multi-periods Scheduling Models 
3.2.1 Model Number 3 

This model is similar to Model 1, but it assumes a planning time frame of one period, such as one 
week. The electricity prices are either announced for the entire week or fixed for all days of the week. 
Each day of the week is divided into 96 equal parts, which correspond to quarter-hour intervals. The 
objective remains to minimize the consumer's payment cost by optimizing the cost of electrical 
energy; however, in this case, only grid power is used, and no energy is sourced from solar cells or 
other renewable sources. Some appliances can be controlled throughout the week and are available 
to use on all days, while others are only usable on specific days of the week. According to the stated 
assumptions, a set of smart appliances can be programmed to minimize the consumer's payment 
cost. The energy management system selects the operating times of smart appliances to optimize 
the cost of electrical energy. 

Based on the assumptions of the problem, the following are considered: 
i. The parameters are fixed and definite. 

ii. The pricing is dynamic, and the cost calculation is based on the tariffs determined by the 
consumer for the week. 

iii. Both types of household appliances are considered, i.e., programmable and responsive to 
time-varying prices and non-programmable and non-responsive to time-varying prices. 

iv. The model considers 15 smart devices and eight virtual processes. The planning time 
frame is assumed to be one week, and each day is divided into 96 equal parts (quarter 
hours) according to the electricity price announcement time frame. 

v. Some appliances can be controlled throughout the week and are available to use on all 
days, while others are only usable on specific days of the week. 
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Given these assumptions, the energy management system can select the operation times of 
smart appliances to minimize the consumer's payment cost by optimizing the cost of electrical 
energy. 

Equation (12) presents the objective function for minimizing the electric energy cost of the smart 
home. Equation (13) represents the user's desired operating time range for each electrical device, 
which is specified by the start time and end time of the interval [Sti, Eni]. Increasing this interval can 
lead to a better solution for cost reduction, but it may also compromise the user's comfort. To ensure 
the correct operation of smart devices, virtual processes for each device must be arranged according 
to its load profile (inequality 14). If the jth process of smart equipment i is performed in time interval 

t (𝑋𝑖.𝑗.𝑡.𝑑 = 1), the next process must be performed in an interval greater than t (𝑋𝑖.𝑗.𝑡′.𝑑 = 1. 𝑡′ >

𝑡). As defined in the objective functionToff
i  indicates the allowed interval between virtual process j 

and j+1 for smart device i. To avoid breaks longer than the time Toff
i   between the processes (j) of the 

i-th smart device, the following condition must be considered (inequality 15). To prevent congestion 
in the distribution system, the maximum power that can be absorbed from the network can be 
limited. This limit is determined by the contract between the customer and the electricity company 
and is typically variable with time. According to this limit (modeled by Equation (16)), the total power 
consumption of both smart and non-smart equipment in each time period should not exceed the 
maximum power that can be absorbed from the network. 

 
3.2.2 Model Number 4 

After calculating the weekly energy consumption of the smart home using Model 3, a solar cell 
will be incorporated into the model to enhance its efficiency. As a result, the smart home will be 
connected to the network and will be able to meet its energy requirements through the network 
under real-time prices if the solar cell is unable to satisfy the demand. The energy management 
system will plan the usage times of household equipment based on real-time prices (predicted), while 
also monitoring the operational limits and usage of the equipment to minimize electricity 
consumption costs. The proposed model will be as follows:  

min ∑ ∑ ct,d .Δt 96
t=1 (max(( Ptd

N + ∑ ∑ Ptd
c8

j=1
15
i=1  . Xijtd − Pvtd),0))

7

d=1
( (17) 

S.t   

(12) 
 

min ∑ ∑ ct,d .Δt 96
t=1 ( 𝑃𝑡𝑑

𝑁 + ∑ ∑ 𝑃𝑡𝑑
𝑐8

𝑗=1
15
𝑖=1  . 𝑋𝑖𝑗𝑡𝑑)

7

d=1
( 

 S.t 

(13) ∑ 𝑋𝑖.𝑗.𝑡.𝑑

𝐸𝑛𝑖

𝑡=𝑆𝑡𝑖

= 1                                                                                        ∀ 𝑖. 𝑗 

(14) 𝑋𝑖.𝑗+1.𝑡.𝑑 ≤ ∑ 𝑋𝑖.𝑗.𝑡′.𝑑                                                                          ∀𝑖. 𝑗. 𝑡. 𝑑           

𝑡−1

𝑡′=1

 

(15) 𝑋𝑖.𝑗.𝑡.𝑑 ≤ ∑ 𝑋𝑖.𝑗+1.𝑡′.𝑑                                                                 ∀𝑖. 𝑗. 𝑡. 𝑑           

𝑡+𝑇𝑜𝑓𝑓
𝑖 /∆t

𝑡′=𝑡+1

 

(16) (𝑃𝑡𝑑
𝑁 + ∑ ∑ 𝑃𝑡𝑑

𝑐
8

𝑗=1

15

𝑖=1
 . 𝑋𝑖𝑗𝑡𝑑) ≤ Pt.d

max                                             ∀ t ,d 
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(13) – (15)  

(𝑃𝑡𝑑
𝑁 + ∑ ∑ 𝑃𝑡𝑑

𝑐
8

𝑗=1

15

𝑖=1
 . 𝑋𝑖𝑗𝑡𝑑) ≤ Pt.d

max+ 𝑃𝑣𝑡𝑑         ∀ t ,d (18) 

 
The energy management system optimizes the cost of electrical energy in the solar smart home 

by selecting the operation times of smart appliances (objective function (17)). Constraints (13, 14, 
and 15) are applicable to this objective function. The power generated by the solar cell added to 
constraint number 16 to satisfy the demand (inequality (18)). 

Since the smart house model with a solar cell (Equation (17)) is nonlinear, it can be linearized by 
defining a new variable 𝑍𝑡.𝑑  as follows:    

 

min       ∑ ∑ ct,d .Δt .

96

t=1

𝑍𝑡.𝑑

7

𝑑=1

 
(19)  
 

S.t  

(13) – (15), (18)  

𝑍𝑡.𝑑 ≥ 𝑃𝑡𝑑
𝑁 + ∑ ∑ 𝑃𝑡𝑑

𝑐
8

𝑗=1

15

𝑖=1
 . 𝑋𝑖𝑗𝑡𝑑- P𝑣t,d          ∀ t ,d 

(20) 
 

𝑍𝑡.𝑑 ≥ 0   .                                                                   ∀ t (21) 
 

𝑋𝑖.𝑗.𝑡.𝑑= {0.1}                                                              ∀ i,j,t,d (22) 
 

The linear objective function (19) represents the linearized version of the original nonlinear 
objective function (17), incorporating the constraints (13), (14), (15), and (18). To solve the problem, 
two new constraints, (20) and (21), will also be added. Equation (21) expresses the variable X of type 
zero and one. Since the proposed model is an integer linear programming (ILP) model, it can be 
efficiently solved by advanced solvers. 

 
3.3 Problem Data 

As previously discussed, the daily scheduling assumes that all controllable appliances are turned 
on during a 24-hour period. Table 2 provides information on the allowed interruption time and the 
time for turning on and off the controllable appliances. 

To obtain PV cell data for a full sunny day, Figure 1 from source [41] can be used. This normalized 
curve can be applied to all panels. The average value for each hour has been calculated and included 
after several evaluations [41]. In this study, we utilized data from a 1.4 kW solar panel system that 
was measured over a one-week period during the spring season (from May 15, 2022, to May 21, 
2022). The source of this data is provided in the footnote. When performing smart home calculations, 
it is not possible to rely solely on calculations based on an ideal, sunny day due to factors such as 
radiation intensity, panel heating, radiation angle, and cloudy weather conditions. The 
measurements taken during 15-minute intervals may vary, and this is normal. Averaging is the most 
reliable method for obtaining consistent values for every 15-minute interval. This approach helps 
identify patterns or trends in energy production over time. Figures 2 and 3 display the daily and 
weekly production of the solar panel system. 
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Table 2  
Parameters related to the allowed time 
interval in the problem 

  Case 1 Case 2 

𝑖 𝑇𝑜𝑓𝑓
𝑖  𝑆𝑡𝑖 𝐸𝑛𝑖  𝑆𝑡𝑖 𝐸𝑛𝑖  

1 0.5 0 96 0 96 
2 1 36 50 36 70 
3 3 84 96 30 96 
4 1 48 60 30 60 
5 2 68 80 36 80 
6 0.25 0 96 0 96 
7 0.75 0 96 0 96 
8 24 0 96 0 96 
9 5 0 96 0 96 

10 24 0 96 0 96 
11 24 0 96 0 96 
12 10 0 96 0 96 
13 24 0 96 0 96 
14 1 0 96 0 96 
15 1 0 96 0 96 

 

 
 

Fig. 1. Measured power for fixed and angle-compensated MPPT hourly on a summer day [41] 
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Fig. 2. Cell production capacity in 24 hours (daily) 

 

 
Fig. 3. Weekly solar cell production 

 
The power consumption of the non-responsive appliances of the smart home, which is given as 

input to the problem, is illustrated in Figure 4.  
Table 3 lists the 15 controllable home appliances that will be examined in the case studies, along 

with their power values for eight virtual processes. Each appliance has a power value assigned to it 
for each of the eight virtual processes, which represent different periods throughout the day. The 
load profile of any smart device can be modeled using a series of broken lines, where the load profile 
consists of several processes with almost constant power levels. For instance, Figure 5 illustrates the 
power consumption profile of a washing machine, which consists of six processes with constant 
power consumption. Therefore, the washing machine is assumed to be a combination of six virtual 
devices (processes), where each process is performed in a 15-minute interval. The utilization of 
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appliances can be delayed between processes (in boundary processes) without compromising the 
appliance's quality of service. One of the advantages of this method is the high level of control that 
can be applied to the equipment, allowing the load to be shifted from peak times to non-peak times. 

 

 
Fig. 4. Power consumption of non-responsive appliances according to different time frames in 24 hours 

 

 
Fig. 5. Load profile of a washing machine 

 
Table 4 displays the frequency of use for smart home appliances weekly, providing a 

comprehensive overview of the total number of times each appliance was used during the week. 
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Table 3  
Power values of programmable household appliances (𝑃𝑡

𝑐) 
i The name of the smart 

device 
1 2 3 4 5 6 7 8 

1 Washing machine 100 2000 900 100 100 300 0 0 

2 Dish washing 200 400 1500 1200 800 400 200 200 

3 Dryer 50 500 500 500 0 0 0 0 

4 Vaporizer 400 400 600 300 100 0 0 0 

5 Air disinfectant 200 300 500 50 100 200 0 0 

6 Sprinkler 1 (greenhouse) 50 500 500 500 0 0 0 0 

7 Fans 100 2000 900 100 100 300 0 0 

8 Secret light 200 200 200 200 200 200 200 200 

9 Slow cooker 200 400 1500 1200 800 400 200 200 

10 Automatic curtain 1 100 100 100 100 100 100 100 100 

11 Automatic curtain 2 100 100 100 100 100 100 100 100 

12 Sprinkler 2 (garden) 50 500 500 500 0 0 0 0 

13 Video recording system 100 100 100 100 100 100 100 100 

14 Robot vacuum cleaner 200 400 1500 1200 800 400 200 200 

15 Automatic curtain 3 100 100 100 100 100 100 100 100 

 
Table 4  
Weekly schedule for turning on controllable appliances 

i The name of the smart device Mon Tue Wed Thu Fri Sat Sun 

1 Washing machine o  o  o  ✓  o  o  ✓  
2 Dish washing ✓  ✓  ✓  ✓  ✓  o  o  
3 Dryer o  o  o  ✓  o  o  ✓  
4 Vaporizer o  ✓  o  ✓  o  ✓  o  
5 Air disinfectant ✓  ✓  ✓  ✓  ✓  ✓  ✓  
6 Sprinkler 1 (greenhouse) ✓  o  o  o  ✓  o  o  
7 Fans ✓  ✓  ✓  ✓  ✓  ✓  ✓  
8 Secret light ✓  ✓  ✓  ✓  ✓  ✓  ✓  
9 Slow cooker o  o  ✓  o  o  o  ✓  

10 Automatic curtain 1 ✓  o  ✓  o  ✓  o  o  
11 Automatic curtain 2 ✓  o  ✓  o  ✓  o  o  
12 Sprinkler 2 (garden) o  o  ✓  o  o  o  ✓  
13 Video recording system ✓  ✓  ✓  ✓  ✓  ✓  ✓  
14 Robot vacuum cleaner o  ✓  o  ✓  o  ✓  o  
15 Automatic curtain 3 o  ✓  o  ✓  o  ✓  o  

 

4. Solution Algorithm 
4.1 A Branch and Bound-based operational and research approach (B&B) 

B&B was first presented by Land and Doig in 1960, due to their ability to decompose complex 
patterns and make highly accurate predictions, well known as a powerful tool in the field of 
operational research [42]. Among algorithms, its survey explores the space of the entire original 
problem based on a tree structure to generate parallel sorting solutions. This is achieved by creating 
children as sub-problems for unexplored nodes of the tree through branching and pruning the search 
space to eliminate suboptimal solutions, ultimately reaching an accurate solution suitable for solving 
a hard NP problem. Thus, the main cores of the algorithm are the searching strategy, branching, and 
pruning methods [43]. Recently, studies have focused on representing a feasible way to widely use it 
in optimization problems to overcome complexity in applications. In 2018, Simirnov and Voloshinov 
[44] implemented developed solvers in Python to address complex problems within the framework 
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of discrete and global optimization. CBC (Coin-or- Branch and cut)1 solver is a kind of Domain 
decomposition branch and bound algorithm as an open-source solver used to solve Mixed Integer - 
Leaner programming problems (MILP). It's developed by COIN-OR (Computational Infrastructure for 
Operations Research) and releases an updated version every year. Advantages of CBC solver:  

i. Free and easily acceptable; 
ii. High compatibility with programming problems; 

iii. Extensive users; 
iv. Implementable in production programming, Logistics, supply chain management, and 

allocation issues. 
 
4.2 Developed CBC solver for solving the Proposed Models 

The first stage involves verifying the correspondence between the proposed mathematical model 
and the input parameters, variables, constraints, and objective functions, which are introduced into 
the Python software via Pyomo. The second stage was solved within the framework of linear 
programming (LP), which served as the primary reference for the next stage. The third stage, based 
on the B&B method using CBC Solver, creates a search tree, with each node representing a sub-
problem of the main problem. The process is as follows: 

i. Branching: If the initial solution does not contain integer variables, the problem is split 
into two sub-problems. This division is performed by selecting an integer variable and 
adding new constraints. 

ii. Prune: Any node where the solution is not an integer or has no valid solution is pruned 
and removed from the search. This helps to reduce the search space. 

Additionally, the CBC Solver utilized cutting techniques to enhance the efficiency and speed of 
finding the optimal solution. These techniques introduce new constraints to the model, narrowing 
the search space and eliminating undesirable solutions. 

i. Gomory Cuts: New constraints are added to the model to eliminate fractional solutions. 
ii. CLIQUE: Cuts that are used for special problems such as assignment problems. 

In the final stage, CBC seeks to find the optimal solution that satisfies all constraints and optimizes 
the objective function. This solution may be an integer or a mixture of integers and real numbers. 

Figure 6 below depicts the steps of the B&B developed algorithm in the solved model. 
 

 Start 
 

Input 
1. Import necessary libraries: 
   - pandas for working with Excel data 
   - pyomo for mathematical modeling 
   - tqdm for displaying progress in loops 
   - time for measuring execution time 
   - numpy for numerical operations 
 

2. Print the installed version of numpy to ensure compatibility. 
 

3. Read data from Excel file: 
   - Load data from various sheets in the Excel file using pandas. 
   - Store the data from each sheet into corresponding variables. 
 

4. Define the Pyomo model: 
   - Create a ConcreteModel instance in Pyomo. 
   - Define sets i, j, t, d for use in the model. 
   - Define parameters A, C, Pc, Pmax, PV using the data read from Excel. 
 

 
1 https://github.com/coin-or/Cbc 
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5. Process the data: 
   - Convert the loaded data into the required format for use in the Pyomo model. 
   - Process the data from the P sheet to extract values corresponding to each combination of (i, j, d). 
 

6. Define variables: 
   - Define variables X and W in the model, with X as binary and W as non-negative real numbers. 
 

7. Define the objective function: 
   - Set up the objective function to minimize the cost based on the variables and parameters. 
 

8. Define constraints: 
   - Implement various constraints based on the problem requirements: 
     - Constraints on the values of X and W. 
     - Constraints related to power consumption and production. 
     - Time-related constraints for the variables. 
 

9. Solve the model: 
   - Choose the solver (CBC solver) and set it up. 
   - Measure the time taken to solve the model. 
   - Solve the optimization problem. 
 

10. Process and save results: 
    - Extract the values of the variables after solving. 
    - Save the results to an Excel file. 
    - Print the objective value and the solving time. 
 

 Finish 

Fig. 6. Steps of the developed algorithm 

 
5. Results and Analysis 
5.1 Case studies 

Studies 1 through 4 are based on the basic model where the solar cell is not connected to the 
smart home, while studies 5 through 8 compare the difference in energy costs when a solar cell is 
added to the home. Studies 9 through 12 use the information gathered during studies 1 through 4 
for one week, while studies 13 through 16 use the information gathered during studies 5 through 8 
for one week. Finally, studies 17 and 18 have been conducted to verify the accuracy of the weekly 
functions used. Model number 1 was run seven times a day, once on each day of the week, to verify 
the results of the weekly equations without solar cells (model number 3). The results of the objective 
function for each run are shown in Table 5. Based on the values of the two cost function results, we 
can conclude that the weekly function of model number 3 provides accurate forecasting. 
 

Table 5  
The amount of daily objective functions y (weekly) 

Amount of daily target function Days 

1420592.75 Monday 
1516105.25 Tuesday 
1468367.75 Wednesday 
1569455.25 Thursday 
1420592.75 Friday 
1405655.25 Saturday 
1395692.75 Sunday 

10196461.8 Sum of functions 
10196490 The amount of the objective function of the ninth study 

 
Model number 2 was run seven times a day, once on each day of the week, using solar cell data 

specific to that day to verify the results of the weekly equations with actual solar cell data. The results 
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of the objective function for each run are shown in Table 6. Based on the values of the cost function 
results, we can conclude that the weekly equations with solar cell data (model number 4) provide 
accurate forecasting. 

 
Table 6  
The amount of daily objective functions according to the information of the study (weekly) 

Amount of daily target function Days 

709796.031 Monday 
875589.531 Tuesday 
819389.172 Wednesday 
895577.474 Thursday 
915014.067 Friday 
813608.281 Saturday 
747176.708 Sunday 
5776151.26 Sum of functions 

5706419.644 The amount of the objective function of the study 

 

The comparison of case studies in terms of fee amount is given in Table 7. Eight case studies were 
conducted in GAMS software under various conditions, including constant and variable energy prices, 
as well as controllable appliance turn-on and turn-off times at different intervals, as outlined in Table 
2. The first to fourth case studies relate to the third model, while the fifth to eighth case studies are 
related to the fourth model. An attempt was made to have a sufficient number of case studies so that 
when the CBC method and the same initial data from the third and fourth models are run in Python, 
the final objective function can be compared more effectively.  

 
Table 7  
Comparison of 1st to 8th-grade case studies (weekly) 

The difference 
between the two 

costs 

Smart home energy cost (Rials) based on 
the proposed model that is connected to 

the PV system 
(5&6&7&8) 

The energy cost of the smart 
home (Rials) is not connected 

to the PV system 
(1&2&3&4) 

Case Study 

4490070.36 5706419.644 10196490 1&5 
4548909.94 5446964.315 995874.25 2&6 
3020786.81 4886922.690 7907709.5 3&7 
4167477.45 5353309.296 9520786.75 4&8 

 
Based on the table above, if the useful life of solar cells is calculated in each case study, the cost 

of purchasing a solar cell system capable of producing 1400 watts of power should also be calculated 
using the daily lifespan. If the daily investment cost for a solar cell in case studies 1 and 5 is less than 
or equal to 4490070.36, in case studies 2 and 6 is less than or equal to 4548909.94, in case studies 3 
and 7 is less than or equal to 3020786.81. In case studies 4 and 8 is less than or equal to 4167477.45, 
using the solar cell system without connecting to an energy storage system would be more 
economical. 

 
5.2 Result Obtained by B&B 

The B&B results in Python are shown in Table 7. The comparison between the obtained results 
using the GAMS software and those with the B&B with the CBC solver in Python demonstrates that, 
in most cases, the results are close to the optimal value of the function from the GAMS results, 
provided that the runtime is lower than that of the GAMS software. Furthermore, the findings, as 
depicted in Figures 7 and 8, demonstrate the effectiveness of using the B&B algorithm with a CBC 
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solver as a tool to optimize household appliances in a smart home. Thus, these results hold significant 
promise for solving similar larger-scale smart home problems in the GAMS software, which we aim 
to develop to solve this proposed model with an input of 1 month in the future. 

 

 
 

Fig. 7. Comparison of objective functions of case studies in GAMS and B&B  

 
 

Fig. 8. The accuracy of Python and Gams programming prediction (percentage) 
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Table 7  
Comparing results between GAMS and B&B 

Gap Accuracy Run time(S) 
Objective function 

in GAMS 
Run 

time(S) 
Objective function 

in B&B method 
Case Study 

0.05% Near 100 16200 10196490 538.09 10139522.574 1 
1.16% Over 98% 16200 9995874.250 535.42 9879510.620 2 
0.07% Near 100 16200 7907709.5 221.17 7851876.5 3 

0.001% Near 100 16200 9520786.75 539.02 9538293.25 4 
1. 5% Over 98%  86400 5706419.644 6859.32 5797588.204 5 
1.3% Over 98% 86400 5446964.315 6872.14 5519012.196 6 

1.99% Over 98% 86400 4886922.690 11389.58 4789542.570 7 
1.15% Over 98% 86400 5353309.296 9931.72 5414919.57 8 

 
6. Discussion and Conclusion 

The installation of smart technology devices in homes has become increasingly popular due to 
the numerous benefits they offer. Planning can be done from the 20th time period onwards when 
the user is awake and can monitor the appliances. This also helps eliminate the afternoon peak, 
resulting in positive impacts on the user's time and energy costs. Home solar technology is another 
useful feature of home automation, as it makes homes more energy-efficient. Solar energy is both 
clean and abundant, and since it is renewable, it is a limitless resource. This means that the future of 
solar smart homes is bright. Choosing the right solar power system is not confusing, as the many 
benefits of home automation and solar integration provide the next step toward a more sustainable 
and energy-efficient residence. You can consult an expert to determine which solar panel might be 
right for your home. 

Flexibility is one of the keys promises of the future home, with the idea that we can build solar 
capabilities and rely more on battery storage from the grid to achieve energy independence. 
Connecting to solar energy has never been easier and has become a popular option for powering the 
home of the future, contributing to a more sustainable world. Imagine a smart home that remains 
fully connected to the national grid, equipped with a backup generator to provide power when 
needed. This is the promise of the house of the future. The fact is that one hour of sunlight on Earth 
is equivalent to one year of energy for the planet. Solar energy users can greatly reduce greenhouse 
gas emissions and avoid the consumption of millions of barrels of fuel annually. 

In conclusion, this paper proposes a method for minimizing electricity consumption costs in a 
smart home with programmable home equipment that can be controlled. The study focused on 
exploring consumption management and load response in a smart home, considering real-time 
pricing. The proposed mathematical models provide a new framework for planning the time of use 
of household equipment while considering the limitations and operation of household appliances. 
The mathematical models of the problem are of the nonlinear integer programming (NLIP) type, 
which was solved using GAMS software after linearizing the proposed models. 

Moreover, the study explored the possibility of using a CBC solver for the B&B algorithm as a tool 
to optimize household appliances in a smart home, and its effectiveness was promising in developing 
a method to solve the smart home problem with large inputs (e.g., 1 month) in Python, where it could 
not be solved with GAMS software. Overall, this study presents a novel approach to smart home 
planning that can significantly reduce electricity consumption costs. The results demonstrate the 
effectiveness of the proposed method and highlight the potential of using B&B methods to optimize 
household appliances in developed models for smart homes. Further research is needed to 
investigate the scalability of the proposed method and its implementation in real-world settings 
under uncertain conditions, such as variability in the production power of photovoltaic systems. This 
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is an important area for future research, as the performance of the proposed method may be 
influenced by factors such as weather conditions, shading, and panel orientation. 
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