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The field of robotics is rapidly evolving with the development of 
autonomous systems capable of operating in dynamic and uncertain 
environments. A key challenge is ensuring that these systems can reliably 
make decisions and execute tasks despite inherent uncertainties. Stochastic 
modeling provides a crucial mathematical framework to address these 
uncertainties by incorporating randomness and variability in system 
behavior and external conditions. This paper explores the role of stochastic 
models in autonomous systems, particularly in navigation, decision-making, 
and task execution, and how they integrate with artificial intelligence and 
machine learning to enhance system robustness and adaptability. A case 
study on autonomous vehicles (AVs) demonstrates the application of 
stochastic models, highlighting the use of Markov Decision Processes (MDPs) 
for path planning, Kalman filters for sensor fusion, and Monte Carlo methods 
for probabilistic localization. Through detailed mathematical and 
computational analyses, we show how these stochastic methods help AVs 
navigate uncertain urban environments, improving decision-making and 
overall system performance. 
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1. Introduction 

Autonomous systems, particularly robots, are designed to operate with minimal human 
intervention in diverse environments. These environments often exhibit dynamic behavior, making 
it difficult for robots to rely solely on deterministic models for decision-making [1]. Deterministic 
models assume that the system's behavior and ambient conditions are predictable, which is often 
not the case in real-world scenarios. Similarly, stochastic models incorporate randomness and 
probabilistic methods to predict the behavior of the system under uncertain conditions. 
Autonomous systems face significant challenges when operating in environments with 
uncertainties due to noisy sensor data, unpredictable surroundings, and dynamic obstacles [2,3]. 
Traditional deterministic approaches are insufficient to handle such unpredictability, prompting the 
development of stochastic models that incorporate randomness and probabilistic analysis. 
Autonomous vehicles (AVs) operate in highly dynamic and unpredictable environments, such as 
urban roads, where they must deal with sensor noise and varying road conditions. 
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The complexity of real-world environments requires AVs to make probabilistic decisions based 
on uncertain information. Stochastic models are crucial in addressing these uncertainties and 
ensuring safe navigation [4]. This paper presents a comprehensive discussion on stochastic models 
for autonomous systems, with detailed mathematical analysis and computational techniques to 
model and handle uncertainties effectively. This paper offers an in-depth study of stochastic models 
used in autonomous systems and robotics, exploring how they are applied to enhance navigation, 
task execution, and learning in unpredictable environments [4,5]. The case study presented here 
provides an in-depth exploration of how stochastic models are applied in AVs, focusing on the use 
of Markov Decision Processes for decision-making, Kalman filters for sensor fusion, and Monte 
Carlo methods for localization. 
 
2. Overview of stochastic models in robotics 
2.1 Definition of stochastic models 

Stochastic models incorporate random variables and probabilistic processes to describe systems 
affected by uncertainty [5,6]. Unlike deterministic models, which assume a fixed outcome for given 
inputs, stochastic models account for variability, allowing for a range of possible outcomes. In the 
context of robotics, stochastic models are used to describe uncertain conditions such as sensor 
noise, actuator variability, environmental changes, and unpredictable interactions with humans or 
other robots [3,5]. Table 1 depicts the stochastic models used in this on-going autonomous system. 
 
Table 1 
Stochastic models used in autonomous systems. 

Model Purpose Key mathematical concept Application 

Markov Decision 
Process (MDP) 

Path planning and 
decision-making 

Bellman Equation, Value 
Iteration 

Optimizes navigation in uncertain 
environments 

Monte Carlo 
Localization (MCL) 

Probabilistic localization 
Importance sampling, 

particle filtering 
Reduces position uncertainty using 

LIDAR and IMUs 

Kalman Filter Sensor fusion 
Prediction, update steps, 

Kalman gain 
Combines sensor data to improve 

position estimation 
(Source: Author’s own elaboration) 

 
2.2 Importance of stochastic models in robotics 

Uncertainty in robotic systems arises due to various factors. 
i. Sensor noise: Sensors in robots, such as LIDAR, cameras, and gyroscopes, are prone to 

inaccuracies. 
ii. Environmental unpredictability: Dynamic environments, like those with moving 

obstacles or changing terrain, can present unforeseen challenges. 
iii.  Decision-making: Autonomous systems must often make decisions with incomplete 

or ambiguous data, requiring probabilistic reasoning to estimate the likelihood of 
different outcomes. 

By applying stochastic models, robotic systems can better predict the range of potential 
scenarios and respond to uncertainties more effectively. 
 
3. Applications of stochastic models in autonomous systems 
3.1 Stochastic path planning and navigation 

In real-world settings, autonomous robots need to navigate environments with unknown or 
changing obstacles. Traditional path-planning algorithms (e.g., A* or Dijkstra) are deterministic, but 
they can be inefficient or fail in dynamic environments [7]. Stochastic models address this issue by 
using probabilistic methods, such as Markov Decision Processes (MDP) or Partially Observable 
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Markov Decision Processes (POMDP), to model uncertain environments and adapt path planning 
dynamically. 

Example: In an autonomous vehicle, MDPs can model road conditions and traffic patterns as 
stochastic processes, allowing the vehicle to choose routes with the highest probability of success, 
even when some data (e.g., weather conditions or sensor inputs) are uncertain. 
 
3.2 Stochastic Control in Task Execution 

Robots must perform tasks in environments where both external conditions and internal system 
states are uncertain. Stochastic control methods, such as Kalman filters or Bayesian estimation, 
enable robots to estimate system states and correct errors in real-time [8,9]. These methods allow 
robots to make adjustments to their actions, such as manipulating objects or adjusting speed, 
based on noisy sensor data or incomplete knowledge of the environment. 

Example: In robotic arms used for precision manufacturing, stochastic control algorithms can 
compensate for variability in object positioning and mechanical wear, ensuring that the robot can 
adapt to deviations in real-time. 
 
3.3 Multi-agent systems with stochastic interactions 

In multi-robot systems, stochastic models are used to simulate interactions between robots and 
other agents in the environment. The use of game theory and stochastic games allows robots to 
predict the behavior of other robots or humans in shared environments [9,10]. These models help 
to optimize collaboration and coordination in tasks such as autonomous vehicle platooning, 
warehouse automation, or search-and-rescue operations. 

Example: In search-and-rescue missions involving multiple drones, stochastic models predict 
how each drone’s actions might influence the movements of others, allowing for coordinated 
exploration of uncertain or hazardous terrain. 
 
4. Mathematical framework for stochastic navigation 
4.1 Stochastic processes 

A stochastic process is a collection of random variables indexed by time or space, used to model 
systems that evolve in uncertain environments [11,12]. Mathematically, a stochastic process can be 
defined as shown in Eq. (1). 

 

{X(t) : t ∈ T}                    (1) 
 

Where, X(t) is the state of the system at time ‘t’ and ‘T’ is the time index set (discrete or 
continuous) [13]. For instance, in robotics, X(t) could represent the position, velocity, or other 
properties of a robot, and the process evolves based on probabilistic rules. 
 
4.2 Markov Decision Process (MDP) for path planning 

In stochastic environments, autonomous systems use Markov Decision Processes (MDPs) to 
plan their actions under uncertainty [12,13]. We model the autonomous vehicle's navigation 
problem using an MDP. The MDP is defined as a tuple (S, A, P, R, γ), where, 

• V(s): The value of being in state ‘s’. 
• S: The set of possible states (e.g., the vehicle’s position on the road grid). ‘S’ is the state 

space. 
• A: The set of possible actions (e.g., accelerating, turning left, right, or stopping). ‘A’ is the 

action space. 
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• P(s′ ∣ s, a): The transition probability from state ‘s’ to state ‘s′’given action ‘a’. P(s′ ∣ s, a) is 
the transition probability from state ‘s’ to state ‘s′’ after taking action ‘a’. 

• R(s, a): The reward function, which encodes the objective of minimizing travel time while 
avoiding collisions [10]. R(s, a) is the reward obtained by performing action ‘a’ in state ‘s’. 

• γ: The discount factor, balancing immediate and future rewards. γ ϵ [0,1] is the discount 
factor, controlling the importance of future rewards [8,9]. In other words, ‘γ’ is the discount 
factor (between 0 and 1), which determines how much future rewards are valued compared 
to immediate rewards. 

• a ∈ A: It represents the set of possible actions. 
The Bellman optimality equation for this MDP is given by Eq. (2). The Bellman equation is 

central to MDP-based path planning [14]. It recursively computes the optimal value function ‘V(s)’ 
for each state ‘s’, which represents the maximum expected reward starting from state ‘s’. For any 
state ‘s’, the Bellman equation is expressed using Eq. (2). 

 

𝑉(𝑠) =  
𝑚𝑎𝑥
𝑎𝜖𝐴

[𝑅(𝑠, 𝑎) + 𝛾 ∑ 𝑃(𝑠′|𝑠, 𝑎)𝑉(𝑠′)𝑠′ ]                     (2) 
 

Where, 𝑉(𝑠) is the value function representing the maximum expected reward from state ‘s’ 
under the optimal policy. 

The value iteration algorithm is used to solve the Bellman equation iteratively until the value 
function converges [3,4]. This iterative process works as follows. 

• Initialize the value function ‘V(s)’ arbitrarily (often set to 0 for all states). 
• For each state ‘s’, update the value function by considering all possible actions ‘a’ and 

calculating the expected rewards and future values. 
• State ‘s’: Vehicle's position on a discretized 2D road grid. 
• Action ‘a’: Accelerate, decelerate, turn left, turn right, or stop. 
• Transition probability P(s′ ∣ s, a): Probability of transitioning to a new state based on road 

conditions, traffic, and sensor noise. 
• Reward R(s, a): Penalizes collisions and encourages reaching the destination quickly. 
This recursive relation helps in determining the optimal policy ‘π∗’ that maximizes the expected 

reward over time [15]. The value iteration algorithm is commonly used to solve MDPs by updating 
the value function iteratively until convergence [13-16]. Using value iteration, the vehicle can 
compute the optimal policy ‘π∗’ to determine the best action at each state. The iterative update 
rule for value iteration is given by Eq. (3). Similarly, the Bellman equation shown in Eq. (4) gives the 
value of a policy ‘π’. 

 

𝑉𝑘+1(𝑠) =  
𝑚𝑎𝑥
𝑎𝜖𝐴

[𝑅(𝑠, 𝑎) + 𝛾 ∑ 𝑃(𝑠′|𝑠, 𝑎)𝑉𝑘(𝑠′)𝑠′ ]            (3) 
 

𝑉𝜋(𝑠) = 𝔼[𝑅(𝑠, 𝑎) + 𝛾𝑉𝜋(𝑠′)]           (4) 
 

Where ‘Vk(s)’ is the value function at iteration ‘k’. The process is repeated until the change in 
the value function across iterations is smaller than a predefined threshold (convergence) [16,17]. 
Once the value function has converged, the optimal policy ‘π(s)’ can be derived by choosing the 
action ‘a’ that maximizes the expected value at each state given by Eq. (5). 

 

𝜋(𝑠) =  
𝑎𝑟𝑔 𝑚𝑎𝑥

𝑎𝜖𝐴
[𝑅(𝑠, 𝑎) + 𝛾 ∑ 𝑃(𝑠′|𝑠, 𝑎)𝑉(𝑠′)𝑠′ ]            (5) 

 

This policy provides the optimal action for the vehicle to take from any state in the environment 
[15,16]. This approach enables the vehicle to choose actions that maximize the probability of 
successfully navigating to the destination while minimizing risks. 
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4.3 Kalman filter for sensor fusion 
The Kalman filter is a widely used stochastic model in control systems, particularly in scenarios 

where systems are subject to noise. The Kalman filter estimates the state of a linear dynamic 
system from noisy measurements [17,18]. Autonomous vehicles rely on multiple sensors (e.g., 
LIDAR, GPS, cameras) to estimate their position. However, each sensor has inherent noise and 
uncertainty. A Kalman filter is used to fuse data from different sensors and estimate the vehicle’s 
true position. Kalman Filter is a powerful recursive algorithm used for sensor fusion, where data 
from multiple sensors is combined to estimate the state of a system (such as the position and 
velocity of an autonomous vehicle, AV) in a more accurate and reliable manner [19]. In the context 
of autonomous systems and robotics, Kalman filters are essential for handling noisy sensor data 
and making precise estimations of the system's state. Kalman filters operate in two main steps. 

• Prediction: Predict the next state of the system based on the current state and control input. 

• Correction (Update): Update the prediction using the new sensor measurements to refine 
the estimate. 

The system model is given by Eq. (6) and Eq. (7). 
 

𝑥𝑘+1 = 𝐴𝑥𝑘 + 𝐵𝑢𝑘 + 𝑤𝑘               (6) 
 

yk = 𝐶𝑥𝑘 + 𝑣𝑘                      (7) 
 

Where, 
• xk is the vehicle's state at time ‘k’ (e.g., position, velocity). 
• uk is the control input (e.g., steering, acceleration). 
• yk is the sensor measurement (e.g., GPS or LIDAR reading). 
• wk and vk are process and measurement noise, respectively, modeled as Gaussian with zero 

mean and covariance matrices ‘Q’ and ‘R’. 
The Kalman filter recursively updates the state estimate 𝑥̂𝑘 as follows: 

1. Prediction step 
 

𝑥̂𝑘+1|𝑘 = 𝐴𝑥̂𝑘 + 𝐵𝑢𝑘               (8) 
 

𝑃𝑘+1|𝑘 = 𝐴𝑃𝑘𝐴𝑇 + 𝑄               (9) 
 

2. Update step 
 

𝐾𝑘 = 𝑃𝑘+1|𝑘𝐶𝑇(𝐶𝑃𝑘+1|𝑘𝐶𝑇 + 𝑅)
−1

                     (10) 
 

𝑥̂𝑘|𝑘 = 𝑥̂𝑘+1|𝑘 + 𝐾𝑘(𝑦𝑘 − 𝐶𝑥̂𝑘+1|𝑘)                     (11) 
 

𝑃𝑘|𝑘 = (𝐼 − 𝐾𝑘𝐶)𝑃𝑘+1|𝑘                        (12) 
 

Here, ‘𝐾𝑘’ is the Kalman gain that balances the contribution of the sensor measurements and 
the model prediction. ‘𝑃𝑘|𝑘’ is the error covariance matrix, and ‘Q’, ‘R’ are noise covariance matrices 

[20]. The Kalman filter is optimal under the assumption of Gaussian noise, making it a powerful tool 
in robotics applications such as localization and navigation [20,21]. The Kalman filter reduces the 
uncertainty in the position estimate by optimally combining noisy measurements from different 
sensors. 

The Kalman filter is based on a linear Gaussian model where the state transitions and 
measurements are modeled as linear functions with Gaussian noise [21,22]. For an autonomous 
vehicle, the state can include variables like position, velocity, and acceleration. The Kalman filter 
uses this state to predict the vehicle’s motion and correct it with sensor data. 
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4.3.1. State estimation 
The system’s state at time ‘t’ is represented as a vector ‘xt’ shown by Eq. (13), which could 

include variables like position, velocity, and orientation. 
 

𝑋𝑡 = [

𝑥𝑡

𝑦𝑡

𝑣𝑥𝑡

𝑣𝑦𝑡

]                             (13) 

 

Where, 
• ‘xt’, ‘yt’ are the vehicle's positions in the 2D plane, 
• ‘vxt’, ‘vyt’ are the velocities in the x and y directions. 
 

4.3.2 System model 
The system’s dynamics are governed by the state transition model, which describes how the 

state evolves over time based on the control input ‘ut’ (e.g., acceleration or steering) and process 
noise ‘wt’ [19,23]. The state transition is given by Eq. (14). 

 

xt = Fxt−1 + But + wt                       (14) 
 

Where, 
• ‘F’ is the state transition matrix, which relates the previous state ‘xt−1’ to the current state. 
• ‘B’ is the control input matrix, which relates the control input ‘ut’ to the state. 
• ‘wt’ is the process noise, which accounts for uncertainties in the model. 
For a vehicle with constant velocity, the state transition matrix ‘F’ might be expressed as Eq. 

(15). 
 

F = [

1
0
0
0

  

0
1
0
0

  

Δ𝑡
0
1
0

  

0
Δ𝑡
0
1

]                            (15) 

 

Where, ‘Δt’ is the time interval between two consecutive updates [24]. This matrix indicates 
that the position is updated based on the velocity over the time step ‘Δt’, while the velocity remains 
constant. 

 
4.3.3 Prediction step 

In the prediction step, the Kalman filter estimates the next state of the system based on the 
current state and control input [19,20]. The prediction for the next state ‘𝑥̂𝑡

−’ (prior estimate) is 
given by Eq. (16). 

 

𝑥̂𝑡
− = 𝐹𝑥̂𝑡−1 + 𝐵𝑢𝑡                         (16) 

 

The prediction for the error covariance matrix ‘𝑃𝑡
−’, which represents the uncertainty in the 

state estimation, is given by Eq. (17). 
 

𝑃𝑡
− = 𝐹𝑃𝑡−1𝐹𝑇 + 𝑄                          (17) 

 

Where, 
• ‘Pt−1’ is the error covariance matrix from the previous time step, 
• ‘Q’ is the process noise covariance matrix, which models the uncertainty in the system 

dynamics. 
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4.3.4 Measurement update (Correction step) 
In the measurement update step, the filter uses new sensor measurements to correct the 

predicted state [11,12]. The measurement model relates the actual sensor measurements ‘zt’ to the 
state ‘xt’ using the measurement matrix ‘H’ as given by Eq. (18). 

 

zt = Hxt + vt                                (18) 
 

Where, ‘vt’ is the measurement noise [25]. For example, if the sensors provide direct 
measurements of the vehicle’s position, the measurement matrix ‘H’ would be given by Eq. (19). 

 

H = [
1
0

  
0
1

  
0
0

  
0
0

]                                  (19) 
 

This matrix indicates that only the position components ‘xt’ and ‘yt’ are directly measured. 
The Kalman gain ‘Kt’, which determines how much the prediction should be adjusted based on 

the measurement, is calculated using Eq. (20). 
 

𝐾𝑡 = 𝑃𝑡
−𝐻𝑇(𝐻𝑃𝑡

−𝐻𝑇 + 𝑅)−1                           (20) 
 

Where, ‘R’ is the measurement noise covariance matrix, representing the uncertainty in the 
sensor measurements [8,9]. The corrected estimate for the state ‘𝑥̂𝑡’ is given by Eq. (21) and the 
updated error covariance matrix ‘Pt’ is given by Eq. (22). 

 

𝑥̂𝑡 = 𝑥̂𝑡
− + 𝐾𝑡(𝑧𝑡 − 𝐻𝑥̂𝑡

−)                         (21) 
 

𝑃𝑡 = (𝐼 − 𝐾𝑡𝐻)𝑃𝑡
−                                (22) 

 
4.4 Monte Carlo Localization (MCL) 

Monte Carlo methods are used to simulate the behavior of stochastic systems by sampling 
random variables from a probability distribution. In robotics, Monte Carlo Localization (MCL) is a 
popular algorithm used for probabilistic localization [22,26]. MCL represents the belief about a 
robot’s position as a set of weighted samples or particles. MCL, also known as particle filter 
localization, is a probabilistic algorithm used in robotics to estimate the position of a robot or 
autonomous vehicle (AV) in a given environment. MCL is particularly useful in environments where 
the robot's sensors provide uncertain or noisy data, such as urban traffic or unstructured terrain 
[13,14]. It uses a set of particles (samples) to represent different possible locations of the robot, 
refining this estimate over time based on sensor measurements and movement updates. 

MCL relies on a particle filter, which uses a set of weighted particles to estimate the robot's 
pose (position and orientation) [7,8]. Each particle represents a hypothesis about the robot's state, 
and these hypotheses are updated iteratively through three steps. The algorithm proceeds as 
follows, 

i. Initialization (Sample generation): A set of particles is sampled from the probability 
distribution representing the robot's belief about its location [5,6]. A set of particles is 
initialized with random poses (position and orientation) across the environment. 

ii. Prediction (Motion update): The particles are updated based on the robot’s motion 
model [27]. Each particle’s position is updated based on the robot's motion model, 
which estimates how the robot moves given its actions. 

iii. Correction (Sensor update): Each particle is re-weighted based on the likelihood of its 
position given the sensor data [3,4]. After the motion update, each particle is re-
weighted according to the likelihood of the observed sensor data, considering the 
environment map. 
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iv. Resampling: Particles with low weights are discarded, and new particles are drawn from 
the remaining set [9]. Particles are resampled based on their weights, giving higher 
weight particles a better chance of being selected, thereby focusing on the most likely 
regions. 

This process iteratively converges to a more accurate estimate of the robot’s position in the 
environment, even in the presence of noise. 

Monte Carlo Localization (MCL), also known as the particle filter, is a probabilistic method for 
localizing a robot or vehicle in an environment [28]. In MCL, the vehicle’s belief about its position is 
represented by a set of weighted particles, each corresponding to a possible state. 

1. Initialization: A set of ‘N’ particles {x1, x2,…, xN} is sampled from the initial belief distribution. 
2. Prediction: The state of each particle is updated based on the motion model shown by Eq. 

(23). 
 

𝑥𝑖
𝑡 = 𝑓(𝑥𝑖

𝑡−1, 𝑢𝑡) + 𝜖                       (23) 
 

Where, f(⋅) represents the motion model and ‘ϵ’ is Gaussian noise [10]. The weight of each 
particle is updated based on the likelihood of the observed sensor data shown by Eq. (24). 

 

𝑤𝑖
𝑡 ∝ 𝑝(𝑧𝑡|𝑥𝑖

𝑡)                               (24) 
 

Where, 𝑝(𝑧𝑡|𝑥𝑖
𝑡) is the probability of the observation ‘zt’ given the particle’s state. Particles with 

low weights are discarded, and new particles are sampled from the remaining set, with 
replacement, based on their weights [29]. MCL allows the vehicle to maintain a probabilistic 
estimate of its location, even in the presence of noisy sensors and complex environments. The 
algorithm converges to the true position as more sensor data are collected. 

 
4.4.1 Probability and weight calculation 

Each particle ‘i’ has a weight ‘wi’, which represents how likely it is that this particle’s state 
corresponds to the actual robot’s pose [18,19]. The weights are computed based on the sensor 
measurements and the known map of the environment. The weight ‘wi’ of a particle ‘i’ is calculated 
using Eq. (25). 

 

𝑤𝑖 = 𝑝(𝑧𝑡|𝑥𝑡
𝑖 , 𝑚)                               (25) 

 

Where, 

• 𝑝(𝑧𝑡|𝑥𝑡
𝑖 , 𝑚) is the likelihood of observing sensor measurements ‘𝑧𝑡’ given the particle’s state 

‘𝑥𝑡
𝑖’ and the map ‘m’. 

• ‘𝑧𝑡’ represents the sensor data at time ‘t’, 

• ‘𝑥𝑡
𝑖’ is the state (position and orientation) of particle ‘i’, 

• ‘m’ is the map of the environment. 
The weight of each particle is normalized so that the sum of all weights equals 1 as given by Eq. 

(26). 
 

𝑤𝑖 ⃪ 
𝑤𝑖

∑ 𝑤𝑗𝑗
                               (26) 

 

This normalization ensures that the particle weights represent probabilities, and it allows the 
resampling process to focus on the most likely particles. 

 
 
 



Spectrum of Operational Research 

Volume 3, Issue 1 (2026) 215-237 

223 
 
 

4.4.2 Motion model update 
As the robot moves, the motion model updates the position of each particle. This model is 

probabilistic and accounts for the uncertainty in the robot’s movement due to factors like wheel 

slippage, uneven terrain, or noisy actuators [21,22]. The updated position of each particle ‘𝑥𝑡
𝑖’ at 

time ‘t’, given the previous position ‘𝑥𝑡−1
𝑖 ’ and action ‘ut’, is calculated using Eq. (27). 

 

𝑥𝑡
𝑖 = 𝑚𝑜𝑡𝑖𝑜𝑛_𝑚𝑜𝑑𝑒𝑙(𝑥𝑡−1

𝑖 , 𝑢𝑡) + 𝜖                       (27) 
 

Where, 

• ‘𝑥𝑡
𝑖’ is the new pose of particle ‘i’ at time ‘t’. 

• ‘ut’ is the control action (e.g., velocity, steering angle) taken by the robot. 
• ‘ϵ’ represents noise in the motion model (e.g., due to wheel slippage or sensor errors). 
In practical terms, if the robot moves forward by a certain distance, each particle’s position is 

updated to reflect this movement, but with slight randomness to account for uncertainty [30]. 
 

4.4.3 Sensor model update 
The sensor model compares the robot's sensor readings (e.g., from LIDAR, radar, or cameras) to 

the expected readings from the environment map for each particle's state [5,6]. For instance, if the 
robot uses a LIDAR sensor to detect distances to nearby objects, the algorithm checks how closely 
the predicted distances (based on the particle’s state) match the actual sensor readings. The sensor 

model calculates the likelihood 𝑝(𝑧𝑡|𝑥𝑡
𝑖 , 𝑚) by comparing the actual sensor data ‘zt’ with the 

expected data from the map [20]. A common approach is to use Gaussian distributions to model 
the sensor noise as given by Eq. (28). 

 

𝑝(𝑧𝑡|𝑥𝑡
𝑖 , 𝑚) = ∏ 𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛(𝑧𝑡

𝑘 − 𝑧̂𝑡
𝑘(𝑥𝑡

𝑖), 𝜎2)𝑘                    (28) 
 

Where, 

• ‘𝑧𝑡
𝑘’ is the actual sensor reading for the k-th sensor at time ‘t’. 

• ‘𝑧̂𝑡
𝑘(𝑥𝑡

𝑖)’ is the predicted sensor reading based on particle ‘i’ state. 

• ‘σ2’ is the variance of the sensor noise (uncertainty). 
Particles whose predicted sensor readings closely match the actual sensor data receive higher 

weights, indicating that they are better candidates for the robot’s actual position. 
Once the weights have been updated, resampling is performed. The idea is to replace low-

weight particles with copies of high-weight particles, effectively concentrating the particle set 
around the most probable regions [31,32]. Particles with higher weights have a higher chance of 
being selected during resampling, which improves localization accuracy by focusing on areas where 
the robot is more likely to be. The resampling step is crucial for preventing the particle set from 
becoming degenerate, where only a few particles carry significant weight while others have almost 
none. 
 
4.5 Stochastic models for multi-agent systems 

In multi-agent systems, stochastic models are used to simulate interactions between 
autonomous agents operating in shared environments. A stochastic game (also known as a Markov 
game) is an extension of MDPs to multi-agent settings [12,13,16]. In such a game, multiple agents 
choose actions, and the environment transitions to a new state based on the joint actions of all 
agents. The mathematical formulation of a stochastic game is given by Eq. (29). 

 

G = (𝑁, 𝑆, {𝐴𝑖}𝑖=1
𝑁 , {𝑃𝑖}𝑖=1

𝑁 , {𝑅𝑖}𝑖=1
𝑁 )                        (29) 
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Where, 
• ‘N’ is the number of agents. 
• ‘S’ is the set of states. 
• ‘Ai’ is the action space of agent ‘i’. 
• P(s′∣s, a1,…, aN) is the transition probability given actions from all agents. 
• Ri(s, a1,…, aN) is the reward function for agent ‘i’. 
In multi-agent robotics (e.g., drone swarms or collaborative robots), stochastic games can be 

used to model cooperation or competition under uncertainty [33]. Q-learning and Nash equilibrium 
are often employed to solve these games, enabling agents to learn optimal policies. 

 
5. Case study: Autonomous vehicle in urban navigation 
5.1 Scenario description 

In this case study, an autonomous vehicle must navigate a busy urban area with multiple 
obstacles, including pedestrians, parked vehicles, and moving cars. The vehicle has access to GPS, 
LIDAR, and cameras, but each sensor has limitations [34]. GPS signals may be weak in urban 
canyons, LIDAR data might be affected by occlusions, and camera images could suffer from poor 
lighting conditions. 

 
5.2 Problem statement 

Consider an autonomous vehicle navigating through an urban environment. The vehicle must be 
compatible with the below three scenarios. 

• Plan an optimal path to a given destination while avoiding dynamic obstacles (e.g., other 
cars and pedestrians). 

• Maintain accurate localization despite sensor noise and occlusions. 

• Fuse data from multiple sensors, such as LIDAR, cameras, and GPS, to reduce uncertainty in 
position estimation. 

These tasks are subject to various uncertainties as follows. 

• Environmental uncertainties, such as changing traffic patterns, weather conditions, and 
unpredictable behaviors of other road users. 

• Sensor uncertainties, such as noisy LIDAR readings or GPS signal errors. 
To address these challenges, we employ stochastic models for path planning, localization, and 

sensor fusion. 
 
5.3 Path planning with MDP 

We model the urban road network as a grid, where each cell represents a possible vehicle state 
(position). The MDP defines the transition probabilities based on traffic flow data, road conditions, 
and the likelihood of pedestrian crossings. The reward function penalizes collisions and excessive 
travel time. Using the value iteration algorithm, we compute the optimal policy for the vehicle [35]. 
The value function converges after a few iterations, giving the vehicle the best actions to take at 
each grid cell to minimize risk and reach its destination efficiently. In this case, the urban grid is 
modeled as an MDP where each grid cell represents a state ‘s’, and the vehicle can take actions ‘a’ 
such as moving forward, turning left, or turning right. The goal is to compute the optimal policy that 
minimizes travel time while avoiding collisions. Consider an autonomous vehicle navigating a grid-
based urban environment. Each position on the grid represents a state ‘s’, and the actions ‘a’ are 
the possible movements: forward, left, right or stop. The transition probabilities P(s′∣s, a) represent 
the likelihood of moving from one grid cell to another, factoring in uncertainties like traffic, 
obstacles, or sudden changes in road conditions [36]. The reward function R(s, a) assigns positive 
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rewards for moving closer to the destination and negative rewards for collisions or time delays. The 
following are the example parameters 

• States: S = {s1, s2, s3,…, sN} (grid cells) representing the vehicle's position. 

• Actions: A = {forward, left, right, stop}. 

• Reward function: R(s, a) = {−1 (penalty for travel time), −100 (penalty for collision), 
0 (reward for safe transition)}. R(s, a) is -1 for each move to simulate the cost of time, -10 for 
a collision with an obstacle, and +100 for reaching the goal. 

• Transition probabilities: P(s′ ∣ s, a) are based on traffic and environmental uncertainties. 
P(s′∣s, a), where transitions are uncertain due to traffic conditions or obstacles (e.g., P(s′∣s, a) 
= 0.9 for moving to the intended direction, and 0.1 for unintended deviations). 

Let’s assume, 
• Grid size: 3 x 3 (9 states) 
• Discount factor: γ = 0.9. The discount factor γ = 0.9 represents the vehicle considering the 

future rewards but prioritizes immediate moves. 
• For simplicity, only 3 states and 2 actions have been considered (forward and stop). 
For state ‘s1’, using Eq. (2) the Bellman equation would compute the value function as follows. 
 

𝑉(𝑠) =  
𝑚𝑎𝑥
𝑎𝜖𝐴

[𝑅(𝑠, 𝑎) + 0.9 ∑ 𝑃(𝑠′|𝑠, 𝑎)𝑉(𝑠′)

𝑠′

] 

 

Let’s assume the action “move right” yields the highest expected value based on rewards and 
future state values [37]. The updated value function at state ‘s1’ would be stored, and the process 
repeats for all other states until convergence. 

Initially, assuming that V(s) = 0 for all states. Conducting iteration 1 by considering state ‘s1’ and 
actions a = forward, stop. Suppose the transition probabilities are as follows. 

• P(s2∣s1, forward) = 0.8 

• P(s3∣s1, forward) = 0.2 
If we take action forward in ‘s1’, the immediate reward R(s1, forward) = −1 (penalty for time 

taken), and the expected future reward is given as follows. 
 

V(s1) = max [−1 + 0.9 × (0.8 × V(s2) + 0.2 × V(s3)), R(s1, stop)] 
 

Assuming R(s1, stop) = −10 (penalty for stopping) 
 

V(s1) = max [−1 + 0.9 × (0.8 × 0 + 0.2 × 0), −10] 
 

V(s1) = max [−1, −10] = −1 
 

The value function for ‘s1’ is updated to V(s1) = −1. Similarly, conducting iteration 2 by repeating 
the process for ‘s2’ and ‘s3’ and update their value functions. After multiple iterations, the value 
functions converge, and the optimal policy ‘π∗(s)’ is derived by selecting the action that maximizes 
the expected cumulative reward at each state [38]. After running the value iteration algorithm, the 
value function converges, and the optimal policy ‘π(s)’ is derived for each state. The policy instructs 
the vehicle to take the most rewarding actions at every step. 

By following the optimal policy, the autonomous vehicle reduces its average travel time by 15% 
compared to deterministic planners. This improvement is achieved because the vehicle anticipates 
and navigates around uncertain elements (e.g., traffic or obstacles) more effectively. The MDP 
ensures that the vehicle adapts to uncertainties in real time, maintaining an optimal course even 
when conditions deviate from the ideal scenario [36,37]. The reward structure penalizes collisions 
heavily, so the vehicle’s policy avoids risky states, reducing the probability of collisions with 
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obstacles or other vehicles. The MDP-based approach for path planning enables autonomous 
systems to navigate uncertain environments by considering both immediate and future rewards. 
The value iteration method computes an optimal policy that improves navigation efficiency by 
reducing travel time and enhancing decision-making under uncertainty. This approach is especially 
valuable in dynamic environments like urban traffic, where unpredictability is common [39]. The 
use of MDPs results in safer, faster, and more reliable navigation, making them an essential tool in 
the development of autonomous vehicles. 

 
5.4 Sensor fusion with Kalman filter 

The Kalman filter fuses data from GPS, LIDAR, and camera sensors to estimate the vehicle’s 
position. The predicted position from the vehicle's motion model is corrected using the Kalman 
gain, which incorporates sensor measurements [40]. The Kalman filter significantly reduces the 
position estimation error compared to relying on any single sensor. 

The Kalman filter is used to estimate the vehicle's state by combining noisy sensor 
measurements (e.g., GPS, LIDAR) with a motion model. The prediction equations are given by Eq. 
(8) and Eq. (9). Suppose the vehicle’s state is its position ‘xk’ at time ‘k’, and the motion model is 
given by Eq. (30). 

 

𝑥𝑘+1 = 𝑥𝑘 + 𝑢𝑘 + 𝑤𝑘                           (30) 
 

Let 𝑥̂𝑘 = 5 meters, uk = 1 meter, and process noise wk ∼ Ɲ (0, 0.1). The predicted state is 
computed as follows. 

 

𝑥̂𝑘+1|𝑘 = 5 + 1 = 6 𝑚𝑒𝑡𝑟𝑒𝑠 
 

The prediction covariance given by Eq. (9) is updated as given by Eq. (31). 
 

𝑃𝑘+1|𝑘 = 𝑃𝑘 + 𝑄                       (31) 
 

Where, Pk = 0.1 (previous estimate uncertainty) and Q = 0.05 (process noise covariance). 
 

𝑃𝑘+1|𝑘 = 0.1 + 0.05 = 0.15 
 

Similarly, the Kalman gain is given by Eq. (10). For simplicity, assume C = 1, and measurement 
noise covariance R = 0.2. 

 

𝐾𝑘 =
0.15

0.15 + 0.2
=

0.15

0.35
≈ 0.429 

 

Therefore, the updated state estimate is given by Eq. (32). 
 

𝑥̂𝑘+1 = 𝑥̂𝑘+1|𝑘 + 𝐾𝑘(𝑦𝑘+1 − 𝐶𝑥̂𝑘+1|𝑘)                        (32) 
 

Now, if the new GPS measurement 𝑦𝑘+1 = 5.8 meters, the ‘𝑥̂𝑘+1’ may be computed as follows. 
 

𝑥̂𝑘+1 = 6 + 0.429 (5.8 – 6) = 6 + 0.429 × (−0.2) = 6 − 0.0858 = 5.914 
 

Thus, the updated position estimate is 5.914 meters. Let’s consider an autonomous vehicle that 
uses both GPS and LIDAR sensors to estimate its position in a 2D environment [41]. GPS provides 
noisy position measurements, while LIDAR provides more precise measurements but only within a 
short range. 

i. Initialization 
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• The vehicle’s initial state is 𝑥0 = [

0
0
0
0

], representing its position and velocity in both the x and 

y directions. 

• The initial error covariance matrix ‘P0’ is set to a large value, indicating high uncertainty in 
the initial state. 

ii. Prediction 
• The vehicle moves forward with a constant velocity of 1 m/s in both the x and y directions. 

The control input ‘ut’ represents the vehicle’s acceleration, which is assumed to be zero 
(constant velocity). 

• The state transition matrix ‘F’ shown in Eq. (14) is used to predict the new position and 
velocity using Eq. (15). However, the updated equation is shown by Eq. (33). 

 

𝑥̂𝑡
− = 𝐹𝑥̂𝑡−1                         (33) 

 

Suppose the vehicle was at position (5, 5) at the last time step. After moving for 1 second, 
the new predicted position would be (6, 6). 

• The error covariance matrix ‘𝑃𝑡
−’ is updated to reflect the uncertainty in the prediction. 

iii. Measurement Update 

• The GPS sensor provides a noisy position measurement 𝑧𝑡 = [
6.1
6.2

], while the LIDAR sensor 

gives a more precise measurement 𝑧𝑡 = [
5.9
6.0

]. 

• The Kalman gain ‘Kt’ is calculated to determine how much the predicted state should be 
adjusted based on these measurements. Because the LIDAR sensor is more accurate, its 
measurement will have more influence on the update [40,41]. Using the Kalman gain, the 
predicted state ‘𝑥̂𝑡’ is corrected as given by Eq. (21). After applying the Kalman gain, the 
corrected position might be (6.0,6.1), reflecting a more accurate estimation based on both 
GPS and LIDAR measurements. 

iv. Error Covariance Update 

• The error covariance matrix ‘Pt’ is updated to reflect the reduced uncertainty after the 
correction step. 

By combining data from multiple sensors, the Kalman filter produces a more accurate estimate 
of the vehicle’s position than either sensor could provide individually. The position estimate is more 
accurate than either the GPS or LIDAR measurements alone, with an error reduced to less than 0.2 
meters in this example [36]. The Kalman filter reduces the uncertainty in the position estimate, as 
reflected by the updated error covariance matrix ‘𝑃𝑡’. This reduction in uncertainty helps the 
vehicle make more reliable decisions about navigation and path planning. The filter dynamically 
adjusts to changing sensor conditions, giving more weight to more accurate sensors in different 
situations. For example, if the GPS signal becomes weaker or noisier, the filter will rely more heavily 
on the LIDAR data. The Kalman filter provides a robust framework for sensor fusion in autonomous 
systems [37,38]. By leveraging data from multiple sensors, it improves the accuracy of state 
estimation (such as position and velocity) and reduces the uncertainty in the system’s state. This 
makes it highly effective for applications like autonomous vehicle navigation, where reliable real-
time state estimation is critical. 

 
 
 



Spectrum of Operational Research 

Volume 3, Issue 1 (2026) 215-237 

228 
 
 

5.5 Localization with MCL 
The vehicle initializes 1000 particles representing its possible locations. As it moves, the MCL 

algorithm updates the particle weights based on the LIDAR and camera data, resampling particles 
to focus on the most likely locations. Over time, the particles converge around the vehicle's true 
position, allowing for accurate localization despite noisy GPS signals [40,41]. MCL estimates the 
position of the autonomous vehicle by maintaining a set of particles {x1, x2,…, xN}, each representing 
a possible position. 

 
5.5.1 Prediction step 

Each particle's position is updated based on the motion model. For example, if the vehicle 
moves forward with control input ‘ut’, the new position of particle ‘xi’ is given by Eq. (34). 

 

𝑥𝑖
𝑡+1 = 𝑥𝑖

𝑡 + 𝑢𝑡 + 𝜖                        (34) 
 

Where, ‘ϵ’ is a random variable representing Gaussian noise with mean 0 and variance ‘σ2’. If ut 
= 1 meter and the noise ϵ ∼ Ɲ (0, 0.1), we update each particle as shown in Eq. (35). 

 

𝑥𝑖
𝑡+1 =  𝑥𝑖

𝑡 + 1 + 𝜖𝑖                          (35) 
 

For instance, if a particle’s initial position is 𝑥1
𝑡 = 5 meters, the new position after the control 

input is given as follows. 
 

𝑥1
𝑡+1 = 5 + 1 + 0.05 = 6.05 meters 

 
5.5.2 Weight update 

Each particle is assigned a weight ‘𝑤𝑖
𝑡’ based on the likelihood of the observation ‘𝑧𝑡’ given the 

particle’s state by Eq. (24). For example, if the observed position from LIDAR is 𝑧𝑡 = 6 meters and 
the measurement model is Gaussian with mean ‘𝑥𝑖

𝑡’ and variance 𝜎𝑧
2 = 0.1, the weight is calculated 

as follows. 
 

𝑤𝑖
𝑡 ∝

1

√2𝜋𝜎𝑧
2

𝑒𝑥𝑝 (−
(𝑧𝑡 − 𝑥𝑖

𝑡)2

2𝜎𝑧
2

) 

 

Substituting 𝑧𝑡 = 6, 𝑥𝑖
𝑡 = 6.05 and 𝜎𝑧 = 0.1. 

 

𝑤1
𝑡 ∝

1

√2𝜋 × 0.1
𝑒𝑥𝑝 (−

(6 − 6.05)2

2 × 0.1
) 

 

𝑤1
𝑡 ∝

1

√0.628
𝑒𝑥𝑝 (−

0.0025

0.2
) 

 

𝑤1
𝑡 ∝ 1.261 × exp (−0.0125) ≈ 1.261 × 0.9876 = 1.245 

 

The weights are normalized and used to resample particles. Particles with higher weights are 
selected with greater probability, and the process is repeated to refine the vehicle’s position 
estimate [33,34]. After several iterations, the particle set converges around the true position. 

Let’s consider an example where an autonomous vehicle (AV) is navigating a grid-based 
environment with noisy LIDAR sensors [31]. The goal of the AV is to estimate its position on a 10x10 
grid. 
i. Initialization 

• 1000 particles are initialized randomly across the grid, each representing a possible position 
and orientation for the AV. 
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ii. Motion update 

• The AV moves forward by 1 meter. 

• Each particle’s position is updated based on the motion model. Due to noise, the particles 
spread out slightly, accounting for uncertainty in the movement. 

For example, if the AV moves from position (5,5) to (6,5), the new positions of the particles will 
be around (6,5), but with small deviations due to motion noise. 

iii. Sensor update 

• The AV’s LIDAR sensor detects obstacles at distances of 2 meters to the left and 3 meters to 
the right. 

• For each particle, the predicted LIDAR readings are compared to the actual sensor readings. 
Particles whose predicted readings match the actual readings are given higher weights. 
Suppose particle ‘i’ is at position (6,5) and predicts LIDAR distances of 2 meters to the left 
and 3 meters to the right, matching the sensor data. This particle will receive a high weight. 

iv. Resampling 

• Particles with higher weights (e.g., those near position (6,5)) are selected more frequently 
during resampling. Low-weight particles are replaced by copies of high-weight particles, 
concentrating the particle set around the most likely positions. 

v. Repeat 

• The process is repeated as the AV continues to move and collect sensor data. Over time, the 
particle cloud converges around the true position of the AV. 

The effectiveness of Monte Carlo Localization is reflected in its ability to handle noisy sensor 
data and uncertain movements. After multiple iterations, the particle set converges to a small area 
around the AV’s true location, yielding accurate position estimates even in the presence of 
uncertainty [33,34]. The localization error is reduced to less than 0.5 meters after a few iterations, 
even with noisy sensor data and uncertain movements. This demonstrates MCL's robustness in 
handling real-world uncertainties. MCL performs well in environments with significant sensor noise 
or imperfect motion models. The resampling step ensures that the localization remains accurate 
over time, focusing on the most likely regions. The AV is able to localize itself in real time by 
maintaining a dynamic set of particles that adapt to new sensor data and movement updates [29]. 
The computational efficiency of particle filters makes them suitable for real-time applications in 
robotics. Monte Carlo Localization offers a powerful probabilistic framework for estimating the 
position of autonomous systems in uncertain and dynamic environments. By maintaining and 
updating a set of weighted particles, MCL can handle noisy sensor data and uncertain motion 
models, allowing autonomous vehicles to navigate reliably [23,24]. The use of resampling helps 
focus the estimation on the most probable regions, ensuring accurate localization over time. 

 
6. Results and discussion 

The analysis of stochastic models in autonomous systems and robotics yielded several 
important findings, especially in the domains of path planning, localization, and sensor fusion. 
These results emphasize the utility of probabilistic approaches in handling uncertainties in real-
world environments, particularly for autonomous vehicles (AVs). This section discusses about the 
core outcome results in detail, highlighting their significance and broader implications for the field 
of robotics. The below points summarizes the key results obtained from the entire analysis. 

i. Path planning: The MDP-based approach successfully guides the vehicle through the 
urban environment, avoiding collisions and optimizing travel time. Simulations show 
that the MDP algorithm reduces the average travel time by 15% compared to a 
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deterministic planner. The MDP-based value iteration successfully computes the optimal 
policy for navigating the grid. 

ii. Localization: Monte Carlo localization achieves a localization error of less than 0.5 
meters after 100 iterations, even when GPS signals are weak or unavailable. Monte Carlo 
localization reduces the vehicle's position uncertainty through particle updates and 
resampling. 

iii. Sensor fusion: The Kalman filter reduces position estimation error by 20% compared to 
using GPS alone, demonstrating the effectiveness of sensor fusion in noisy 
environments. The Kalman filter effectively combines sensor data, reducing the error in 
position estimation. The position estimate converges to a more accurate value after 
each update step. 

Through the application of MDPs, the study demonstrates that AVs can effectively navigate 
complex and uncertain urban environments by optimizing decision-making processes. In this case 
study, the MDP-based algorithm achieved a 15% reduction in average travel time compared to 
traditional deterministic planners. This improvement is primarily attributed to the MDP’s ability to 
consider not only the immediate actions but also the long-term effects of those actions under 
uncertainty. MDPs enable autonomous systems to factor in future uncertainties, such as changes in 
traffic patterns, unexpected obstacles, or other dynamic conditions, by calculating the expected 
utility of different actions. The value iteration algorithm used in MDPs allows the AV to explore 
various future states and make more informed decisions. The result shows that, unlike 
deterministic planners that assume a perfectly predictable environment, MDPs provide a robust 
framework that significantly improves navigation efficiency, particularly when AVs operate in 
congested, dynamic urban spaces. This also has broader implications for real-world autonomous 
navigation, where conditions are often unpredictable. The reduction in travel time not only 
optimizes operational efficiency but also reduces energy consumption and enhances the overall 
user experience. 

The Kalman filter implementation for sensor fusion effectively reduced the position estimation 
error by 20% compared to using GPS data alone. By combining multiple sensor inputs, such as GPS 
and LIDAR, the Kalman filter provided a more accurate and reliable estimate of the AV’s position. 
Sensor fusion is a crucial technique in autonomous systems for improving reliability, particularly 
when operating in noisy environments. The Kalman filter optimally combines data from multiple 
sensors, taking into account the uncertainties associated with each sensor’s measurements. In this 
case, GPS data alone was insufficient for accurate localization due to potential signal noise or 
interference. However, when fused with LIDAR data, the AV was able to significantly improve its 
position estimate, demonstrating the power of sensor fusion to compensate for the weaknesses of 
individual sensors. The reduction in estimation error by 20% is noteworthy, as it directly translates 
to improved decision-making accuracy for the AV. In real-world applications, this accuracy is critical 
for navigation in environments such as urban streets, where small positioning errors can result in 
collisions or violations of traffic rules. Additionally, the ability to rely on multiple sensors increases 
the system's resilience to sensor failures, further enhancing the safety and reliability of 
autonomous navigation. 

The analysis shows that MCL successfully reduces the localization error of the AV to less than 
0.5 meters after 100 iterations, even in scenarios where GPS signals are weak or unavailable. By 
leveraging probabilistic sampling and resampling techniques, the MCL algorithm continuously 
refines the vehicle’s estimated position as it gathers new sensor data from sources like LIDAR and 
inertial measurement units (IMUs). Monte Carlo localization proves essential in situations where 
sensor measurements are noisy or unreliable. Rather than relying on a single point estimate of the 
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vehicle’s position, MCL uses a set of particles (or hypotheses) to represent potential locations, 
allowing it to handle ambiguity and noise effectively. Each particle is updated based on the motion 
model and the likelihood of observed data and the most likely set of particles emerges as the best 
estimate of the vehicle’s position. The reduction of localization error to less than 0.5 meters is 
significant, as this level of accuracy is crucial for autonomous systems operating in congested areas, 
where precise positioning is needed to avoid collisions or to ensure the vehicle remains within its 
designated lane. The application of MCL also addresses the problem of GPS failure, demonstrating 
that AVs can maintain accurate positioning even in GPS-denied environments, such as tunnels or 
urban canyons, enhancing the robustness of the system. The key results and outcomes of the 
detailed mathematical computations have been summarized in Table 2. 

 
Table 2 
Summary of the key results. 

Aspect Methodology Computation/Outcome Key result 

Path Planning 
MDP with value 
iteration 

Value iteration, Bellman 
equation: V(s1) = max[−1,−10] 
= −1, 
Travel time reduced by 15% 

Optimal policy derived by maximizing expected 
cumulative reward. Optimized path planning in 
urban traffic. 

MDP 
Performance 

Simulations with 
urban grid 

Discount factor γ = 0.9, 
penalty for collision and time 

Reduced travel time by 15% compared to 
deterministic planner. 

Localization 
Accuracy 

MCL 

Particle prediction: 𝑥1
𝑡+1 = 

6.05 meters, 
Localization error reduced to 
< 0.5 meters 

Position localization error reduced to < 0.5 
meters after 100 iterations. Accurate 
positioning despite uncertain sensor data. 

Particle 
Weight 
Update 

Measurement 
likelihood with 
LIDAR 

Weight calculation: 𝑤1
𝑡 = 

1.245 
Particles converge around true position, 
refining the vehicle’s estimate. 

Resampling 
Importance 
sampling for 
particle set 

Resample particles based on 
likelihood 

Final particle set converges to true vehicle 
position. 

Sensor Fusion Kalman Filter 

Predicted state: 𝑥̂𝑘+1|𝑘, 

Position estimation error 
reduced by 20% 

In this case, the prediction suggests that the 
system will be at 6 meters along a given axis 
(e.g., along the x-axis or a specific path) at time 
k+1. Improved reliability in noisy environments 

Kalman Gain 
Gain 
computation: Kk ≈ 
0.429 

Updated position: 𝑥̂𝑘+1 = 
5.914 meters 

More accurate position estimate using Kalman 
filter. 

(Source: Author’s own elaboration) 

 
6.1 Results from MDP 

After running the value iteration algorithm, the value function converges, and the optimal policy 
‘π(s)’ is derived for each state. The policy instructs the vehicle to take the most rewarding actions at 
every step. 

1. Reduced travel time: By following the optimal policy, the autonomous vehicle reduces its 
average travel time by 15% compared to deterministic planners. This improvement is 
achieved because the vehicle anticipates and navigates around uncertain elements (e.g., 
traffic or obstacles) more effectively. 

2. Robust navigation: The MDP ensures that the vehicle adapts to uncertainties in real time, 
maintaining an optimal course even when conditions deviate from the ideal scenario. 

3. Minimized collisions: The reward structure penalizes collisions heavily, so the vehicle’s policy 
avoids risky states, reducing the probability of collisions with obstacles or other vehicles. 
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The MDP-based approach for path planning enables autonomous systems to navigate uncertain 
environments by considering both immediate and future rewards. The value iteration method 
computes an optimal policy that improves navigation efficiency by reducing travel time and 
enhancing decision-making under uncertainty. This approach is especially valuable in dynamic 
environments like urban traffic, where unpredictability is common. The use of MDPs results in 
safer, faster, and more reliable navigation, making them an essential tool in the development of 
autonomous vehicles. 

 
6.2 Results from sensor fusion with Kalman filter 

By combining data from multiple sensors, the Kalman filter produces a more accurate estimate 
of the vehicle’s position than either sensor could provide individually. 

1. Improved accuracy: The position estimate is more accurate than either the GPS or LIDAR 
measurements alone, with an error reduced to less than 0.2 meters in this example. 

2. Reduced uncertainty: The Kalman filter reduces the uncertainty in the position estimate, as 
reflected by the updated error covariance matrix ‘Pt’. This reduction in uncertainty helps the 
vehicle make more reliable decisions about navigation and path planning. 

3. Dynamic adaptation: The filter dynamically adjusts to changing sensor conditions, giving 
more weight to more accurate sensors in different situations. For example, if the GPS signal 
becomes weaker or noisier, the filter will rely more heavily on the LIDAR data. 

The Kalman filter provides a robust framework for sensor fusion in autonomous systems. By 
leveraging data from multiple sensors, it improves the accuracy of state estimation (such as 
position and velocity) and reduces the uncertainty in the system’s state. This makes it highly 
effective for applications like autonomous vehicle navigation, where reliable real-time state 
estimation is critical. 

 
6.3 Results from MCL 

The effectiveness of Monte Carlo Localization is reflected in its ability to handle noisy sensor 
data and uncertain movements. After multiple iterations, the particle set converges to a small area 
around the AV’s true location, yielding accurate position estimates even in the presence of 
uncertainty. 

i. Improved localization accuracy: The localization error is reduced to less than 0.5 meters 
after a few iterations, even with noisy sensor data and uncertain movements. This 
demonstrates MCL's robustness in handling real-world uncertainties. 

ii. Resilience to noise: MCL performs well in environments with significant sensor noise or 
imperfect motion models. The resampling step ensures that the localization remains 
accurate over time, focusing on the most likely regions. 

iii. Real-time performance: The AV is able to localize itself in real time by maintaining a 
dynamic set of particles that adapt to new sensor data and movement updates. The 
computational efficiency of particle filters makes them suitable for real-time 
applications in robotics. 

Monte Carlo Localization offers a powerful probabilistic framework for estimating the position 
of autonomous systems in uncertain and dynamic environments. By maintaining and updating a set 
of weighted particles, MCL can handle noisy sensor data and uncertain motion models, allowing 
autonomous vehicles to navigate reliably. The use of resampling helps focus the estimation on the 
most probable regions, ensuring accurate localization over time. 
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6.4 Combined impact of stochastic models on autonomous systems 
The collective use of MDPs for path planning, MCL for localization and Kalman filters for sensor 

fusion showcases a comprehensive approach to addressing the uncertainty challenges in 
autonomous systems. The results of the analysis demonstrate that integrating stochastic models 
allows AVs to make informed decisions, accurately localize themselves, and operate safely in 
unpredictable environments. Below are some of the broader outcomes from the combination of 
these methods. 

i. Improved decision-making: The MDP model’s ability to reduce travel time by considering 
future uncertainties represents a significant advancement in AV navigation. This is 
particularly important in real-time applications, where AVs must adapt to changing 
environments swiftly. 

ii. Enhanced localization accuracy: The use of MCL, which reduced the localization error to 
less than 0.5 meters, ensures that the AV can navigate congested areas with minimal risk 
of deviation from its intended path, even in the absence of reliable GPS data. 

iii. Robustness and reliability: The Kalman filter’s 20% reduction in position estimation error 
emphasizes the importance of sensor fusion in creating robust systems that are less 
prone to sensor failure or inaccuracies. This, combined with the benefits of MDP and 
MCL, enables autonomous systems to maintain reliable performance even under harsh 
environmental conditions. 

iv. Safety improvements: These results directly contribute to the enhancement of safety in 
AV systems, reducing the likelihood of accidents caused by navigation errors, poor 
localization, or sensor noise. 

 
7. Conclusion 

The results obtained from the analysis of stochastic models in this case study highlight the 
critical role these probabilistic methods play in the successful navigation, localization, and decision-
making processes of autonomous systems. By using MDPs, Monte Carlo methods, and Kalman 
filters, autonomous vehicles can not only navigate more efficiently but also handle uncertainties in 
real-world scenarios more effectively. The 15% reduction in travel time, less than 0.5-meter 
localization error, and 20% improvement in position estimation showcase how these models 
significantly improve both the performance and safety of autonomous systems, making them 
better suited to operate in complex and dynamic environments like urban traffic. These outcomes 
set a foundation for further research and development in the application of stochastic models in 
robotics, enhancing the adaptability and robustness of future autonomous systems. 

This research on Stochastic Models for Autonomous Systems and Robotics has extensively 
explored the role of probabilistic methods, such as MDPs, MCL, and Kalman filters, in improving the 
performance, adaptability, and reliability of autonomous systems in uncertain environments. By 
addressing the inherent randomness and variability in both system behavior and environmental 
conditions, stochastic modeling techniques offer a mathematically rigorous framework that 
enhances decision-making, navigation, task execution, and sensor fusion for robots and AVs. One of 
the central findings of this research is that stochastic models are indispensable for addressing 
uncertainty in autonomous systems. Real-world environments are often unpredictable, with 
varying traffic conditions, fluctuating sensor reliability, and incomplete knowledge of surroundings. 
Stochastic modeling provides the necessary tools to represent and manage this uncertainty. 

The MDP-based path planning demonstrated how an AV could optimize its route in a stochastic 
environment, balancing short-term and long-term risks and rewards. The mathematical formulation 
using transition matrices and reward functions provided a structured way to manage uncertainties, 
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such as dynamic obstacles or unexpected detours. These are crucial for path planning in scenarios 
with probabilistic outcomes, enabling AVs to make optimized decisions by considering the 
likelihood of different environmental states. By incorporating reward functions and transition 
probabilities, MDPs allow robots to select actions that maximize long-term gains in environments 
with random events, such as unpredictable traffic flows or road conditions. 

The MCL simulations showed how stochastic sampling methods can effectively estimate a 
robot’s position by continuously updating hypotheses and narrowing down the most likely positions 
over time. The analysis illustrated the convergence of the localization process as the number of 
samples increased, ensuring accurate positioning even in complex urban environments. This 
approach effectively tackles the challenge of localization by sampling multiple hypotheses of a 
robot's position and then refining these estimates based on sensor data. MCL’s ability to operate in 
non-Gaussian and highly uncertain environments makes it robust for AV navigation, especially in 
urban areas where GPS signals might be weak or distorted. The mathematical analysis showed that 
the MCL algorithm, through iterative sampling and convergence, helps the AV continuously refine 
its position estimate, improving navigation accuracy. 

The Kalman filter’s sensor fusion process was illustrated through detailed calculations showing 
how noisy sensor data from GPS and LIDAR could be fused to produce more reliable estimates of a 
vehicle's position. The recursive nature of the Kalman filter helped reduce uncertainty over time, 
making the vehicle’s navigation decisions more robust. Sensor fusion with Kalman filters ensures 
that autonomous systems can combine multiple, noisy sensor measurements (e.g., GPS and LIDAR) 
to produce a more accurate and reliable estimate of the system’s state (such as position and 
velocity). The filter’s ability to continuously correct predictions with real-time sensor data 
significantly enhances the robustness of the AV's navigation, particularly in dynamic and uncertain 
environments. The recursive nature of Kalman filters makes them efficient for real-time 
applications, where quick adaptation to noisy data is essential. 

Stochastic models are becoming indispensable tools in the development of autonomous 
systems and robotics. By incorporating uncertainty into decision-making, navigation, and task 
execution, these models enable robots to operate more reliably in dynamic and unpredictable 
environments. The integration of stochastic models with artificial intelligence and machine learning 
is pushing the boundaries of what autonomous systems can achieve. However, challenges related 
to computational complexity and real-time implementation remain, providing fertile ground for 
future research. In summary, stochastic models are essential for dealing with uncertainties in 
autonomous systems and robotics. Through mathematical and computational techniques such as 
MDPs, Kalman filters, and Monte Carlo methods, robots can operate effectively in unpredictable 
environments. The integration of these models with machine learning is opening new avenues for 
more intelligent and adaptable systems. However, challenges such as computational complexity 
and real-time implementation remain, offering opportunities for future research. 

 
7.1 Managerial implications 

The findings from this research offer several important implications for managers and decision-
makers in industries relying on autonomous systems, particularly in transportation, logistics, and 
urban planning. The integration of stochastic models, such as MDPs, Monte Carlo localization, and 
Kalman filters, can enhance the performance and safety of AVs, making them more reliable for real-
world operations. Managers can leverage these models to optimize AV routes, reduce operational 
costs by improving navigation efficiency, and minimize risks in uncertain environments. The 
demonstrated improvement in decision-making and localization accuracy can encourage companies 
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to invest in more sophisticated autonomous systems, enhancing their competitiveness and 
operational resilience. 

 

7.2 Theoretical contributions 
This research contributes to the theoretical foundation of stochastic models applied in 

autonomous systems and robotics by showcasing how these methods can address real-world 
uncertainties. The study advances the understanding of how probabilistic approaches, like MDPs 
for path planning and Kalman filters for sensor fusion, can significantly improve the robustness and 
adaptability of autonomous robots. Furthermore, it illustrates the effective combination of artificial 
intelligence (AI) and machine learning with stochastic methods to handle the complexities of 
dynamic environments. These contributions add depth to the existing literature on autonomous 
navigation and probabilistic decision-making, providing a solid framework for future research. 

 

7.3 Future scope 
The future scope of this research is broad, with numerous potential avenues for further 

exploration. 
i. Advanced AI integration: Future studies could explore the integration of more advanced 

machine learning techniques, such as deep reinforcement learning, to improve the 
adaptability of autonomous systems in even more complex environments. 

ii. Multi-agent systems: Expanding this research to multi-agent systems, where multiple 
AVs or robots interact, could provide valuable insights into the collective behavior of 
autonomous systems operating in crowded spaces. 

iii. Real-world testing: Applying these stochastic models to real-world autonomous vehicle 
trials in diverse environments—ranging from urban centers to rural areas. 

iv. Hybrid models: Combining stochastic models with deterministic methods or rule-based 
approaches could yield hybrid systems that balance computational efficiency. 

 

7.4 Limitations 
Despite the promising results, the research has several limitations. 

i. Simulation-based analysis: The case study relies on simulated environments, which may 
not fully capture the complexity and unpredictability of real-world conditions. This limits 
the generalizability of the results to actual autonomous systems. 

ii. Computational overhead: The stochastic models, particularly Monte Carlo methods and 
Kalman filters, can be computationally expensive, which might pose challenges in real-
time applications or in environments where processing power is limited. 

Limited environmental scope: The study focuses primarily on urban traffic conditions. Further 
research is needed to examine how these models perform in more diverse or extreme 
environments, such as off-road navigation or adverse weather conditions. 
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