

Spectrum of Operational Research Volume 3, Issue 1 (2026) 215-237

215

Spectrum of Operational Research

Journal homepage: www.sor-journal.org
ISSN: 3042-1470

Stochastic Models for Autonomous Systems and Robotics

Shankha Shubhra Goswami1,*, Surajit Mondal1

1 Department of Mechanical Engineering, Abacus Institute of Engineering and Management, Hooghly, 712148, India

ARTICLE INFO ABSTRACT

Article history:
Received 9 March 2025
Received in revised form 13 April 2025
Accepted 19 May 2025
Available online 24 May 2025

The field of robotics is rapidly evolving with the development of
autonomous systems capable of operating in dynamic and uncertain
environments. A key challenge is ensuring that these systems can reliably
make decisions and execute tasks despite inherent uncertainties. Stochastic
modeling provides a crucial mathematical framework to address these
uncertainties by incorporating randomness and variability in system
behavior and external conditions. This paper explores the role of stochastic
models in autonomous systems, particularly in navigation, decision-making,
and task execution, and how they integrate with artificial intelligence and
machine learning to enhance system robustness and adaptability. A case
study on autonomous vehicles (AVs) demonstrates the application of
stochastic models, highlighting the use of Markov Decision Processes (MDPs)
for path planning, Kalman filters for sensor fusion, and Monte Carlo methods
for probabilistic localization. Through detailed mathematical and
computational analyses, we show how these stochastic methods help AVs
navigate uncertain urban environments, improving decision-making and
overall system performance.

Keywords:
Stochastic Modeling; Autonomous Systems;
Decision-Making; Navigation; Kalman
Filters; Monte Carlo Localization.

1. Introduction

Autonomous systems, particularly robots, are designed to operate with minimal human
intervention in diverse environments. These environments often exhibit dynamic behavior, making
it difficult for robots to rely solely on deterministic models for decision-making [1]. Deterministic
models assume that the system's behavior and ambient conditions are predictable, which is often
not the case in real-world scenarios. Similarly, stochastic models incorporate randomness and
probabilistic methods to predict the behavior of the system under uncertain conditions.
Autonomous systems face significant challenges when operating in environments with
uncertainties due to noisy sensor data, unpredictable surroundings, and dynamic obstacles [2,3].
Traditional deterministic approaches are insufficient to handle such unpredictability, prompting the
development of stochastic models that incorporate randomness and probabilistic analysis.
Autonomous vehicles (AVs) operate in highly dynamic and unpredictable environments, such as
urban roads, where they must deal with sensor noise and varying road conditions.

* Corresponding author.
E-mail address: ssg.mech.official@gmail.com

https://doi.org/10.31181/sor31202647

 © The Author(s) 2026 | Creative Commons Attribution 4.0 International License

http://www.sor-journal.org/
https://doi.org/10.31181/sor31202647
https://creativecommons.org/licenses/by/4.0/

Spectrum of Operational Research

Volume 3, Issue 1 (2026) 215-237

216

The complexity of real-world environments requires AVs to make probabilistic decisions based
on uncertain information. Stochastic models are crucial in addressing these uncertainties and
ensuring safe navigation [4]. This paper presents a comprehensive discussion on stochastic models
for autonomous systems, with detailed mathematical analysis and computational techniques to
model and handle uncertainties effectively. This paper offers an in-depth study of stochastic models
used in autonomous systems and robotics, exploring how they are applied to enhance navigation,
task execution, and learning in unpredictable environments [4,5]. The case study presented here
provides an in-depth exploration of how stochastic models are applied in AVs, focusing on the use
of Markov Decision Processes for decision-making, Kalman filters for sensor fusion, and Monte
Carlo methods for localization.

2. Overview of stochastic models in robotics
2.1 Definition of stochastic models

Stochastic models incorporate random variables and probabilistic processes to describe systems
affected by uncertainty [5,6]. Unlike deterministic models, which assume a fixed outcome for given
inputs, stochastic models account for variability, allowing for a range of possible outcomes. In the
context of robotics, stochastic models are used to describe uncertain conditions such as sensor
noise, actuator variability, environmental changes, and unpredictable interactions with humans or
other robots [3,5]. Table 1 depicts the stochastic models used in this on-going autonomous system.

Table 1
Stochastic models used in autonomous systems.

Model Purpose Key mathematical concept Application

Markov Decision
Process (MDP)

Path planning and
decision-making

Bellman Equation, Value
Iteration

Optimizes navigation in uncertain
environments

Monte Carlo
Localization (MCL)

Probabilistic localization
Importance sampling,

particle filtering
Reduces position uncertainty using

LIDAR and IMUs

Kalman Filter Sensor fusion
Prediction, update steps,

Kalman gain
Combines sensor data to improve

position estimation
(Source: Author’s own elaboration)

2.2 Importance of stochastic models in robotics

Uncertainty in robotic systems arises due to various factors.
i. Sensor noise: Sensors in robots, such as LIDAR, cameras, and gyroscopes, are prone to

inaccuracies.
ii. Environmental unpredictability: Dynamic environments, like those with moving

obstacles or changing terrain, can present unforeseen challenges.
iii. Decision-making: Autonomous systems must often make decisions with incomplete

or ambiguous data, requiring probabilistic reasoning to estimate the likelihood of
different outcomes.

By applying stochastic models, robotic systems can better predict the range of potential
scenarios and respond to uncertainties more effectively.

3. Applications of stochastic models in autonomous systems
3.1 Stochastic path planning and navigation

In real-world settings, autonomous robots need to navigate environments with unknown or
changing obstacles. Traditional path-planning algorithms (e.g., A* or Dijkstra) are deterministic, but
they can be inefficient or fail in dynamic environments [7]. Stochastic models address this issue by
using probabilistic methods, such as Markov Decision Processes (MDP) or Partially Observable

Spectrum of Operational Research

Volume 3, Issue 1 (2026) 215-237

217

Markov Decision Processes (POMDP), to model uncertain environments and adapt path planning
dynamically.

Example: In an autonomous vehicle, MDPs can model road conditions and traffic patterns as
stochastic processes, allowing the vehicle to choose routes with the highest probability of success,
even when some data (e.g., weather conditions or sensor inputs) are uncertain.

3.2 Stochastic Control in Task Execution

Robots must perform tasks in environments where both external conditions and internal system
states are uncertain. Stochastic control methods, such as Kalman filters or Bayesian estimation,
enable robots to estimate system states and correct errors in real-time [8,9]. These methods allow
robots to make adjustments to their actions, such as manipulating objects or adjusting speed,
based on noisy sensor data or incomplete knowledge of the environment.

Example: In robotic arms used for precision manufacturing, stochastic control algorithms can
compensate for variability in object positioning and mechanical wear, ensuring that the robot can
adapt to deviations in real-time.

3.3 Multi-agent systems with stochastic interactions

In multi-robot systems, stochastic models are used to simulate interactions between robots and
other agents in the environment. The use of game theory and stochastic games allows robots to
predict the behavior of other robots or humans in shared environments [9,10]. These models help
to optimize collaboration and coordination in tasks such as autonomous vehicle platooning,
warehouse automation, or search-and-rescue operations.

Example: In search-and-rescue missions involving multiple drones, stochastic models predict
how each drone’s actions might influence the movements of others, allowing for coordinated
exploration of uncertain or hazardous terrain.

4. Mathematical framework for stochastic navigation
4.1 Stochastic processes

A stochastic process is a collection of random variables indexed by time or space, used to model
systems that evolve in uncertain environments [11,12]. Mathematically, a stochastic process can be
defined as shown in Eq. (1).

{X(t) : t ∈ T} (1)

Where, X(t) is the state of the system at time ‘t’ and ‘T’ is the time index set (discrete or
continuous) [13]. For instance, in robotics, X(t) could represent the position, velocity, or other
properties of a robot, and the process evolves based on probabilistic rules.

4.2 Markov Decision Process (MDP) for path planning

In stochastic environments, autonomous systems use Markov Decision Processes (MDPs) to
plan their actions under uncertainty [12,13]. We model the autonomous vehicle's navigation
problem using an MDP. The MDP is defined as a tuple (S, A, P, R, γ), where,

• V(s): The value of being in state ‘s’.
• S: The set of possible states (e.g., the vehicle’s position on the road grid). ‘S’ is the state

space.
• A: The set of possible actions (e.g., accelerating, turning left, right, or stopping). ‘A’ is the

action space.

Spectrum of Operational Research

Volume 3, Issue 1 (2026) 215-237

218

• P(s′ ∣ s, a): The transition probability from state ‘s’ to state ‘s′’given action ‘a’. P(s′ ∣ s, a) is
the transition probability from state ‘s’ to state ‘s′’ after taking action ‘a’.

• R(s, a): The reward function, which encodes the objective of minimizing travel time while
avoiding collisions [10]. R(s, a) is the reward obtained by performing action ‘a’ in state ‘s’.

• γ: The discount factor, balancing immediate and future rewards. γ ϵ [0,1] is the discount
factor, controlling the importance of future rewards [8,9]. In other words, ‘γ’ is the discount
factor (between 0 and 1), which determines how much future rewards are valued compared
to immediate rewards.

• a ∈ A: It represents the set of possible actions.
The Bellman optimality equation for this MDP is given by Eq. (2). The Bellman equation is

central to MDP-based path planning [14]. It recursively computes the optimal value function ‘V(s)’
for each state ‘s’, which represents the maximum expected reward starting from state ‘s’. For any
state ‘s’, the Bellman equation is expressed using Eq. (2).

𝑉(𝑠) =
𝑚𝑎𝑥
𝑎𝜖𝐴

[𝑅(𝑠, 𝑎) + 𝛾 ∑ 𝑃(𝑠′|𝑠, 𝑎)𝑉(𝑠′)𝑠′] (2)

Where, 𝑉(𝑠) is the value function representing the maximum expected reward from state ‘s’
under the optimal policy.

The value iteration algorithm is used to solve the Bellman equation iteratively until the value
function converges [3,4]. This iterative process works as follows.

• Initialize the value function ‘V(s)’ arbitrarily (often set to 0 for all states).
• For each state ‘s’, update the value function by considering all possible actions ‘a’ and

calculating the expected rewards and future values.
• State ‘s’: Vehicle's position on a discretized 2D road grid.
• Action ‘a’: Accelerate, decelerate, turn left, turn right, or stop.
• Transition probability P(s′ ∣ s, a): Probability of transitioning to a new state based on road

conditions, traffic, and sensor noise.
• Reward R(s, a): Penalizes collisions and encourages reaching the destination quickly.
This recursive relation helps in determining the optimal policy ‘π∗’ that maximizes the expected

reward over time [15]. The value iteration algorithm is commonly used to solve MDPs by updating
the value function iteratively until convergence [13-16]. Using value iteration, the vehicle can
compute the optimal policy ‘π∗’ to determine the best action at each state. The iterative update
rule for value iteration is given by Eq. (3). Similarly, the Bellman equation shown in Eq. (4) gives the
value of a policy ‘π’.

𝑉𝑘+1(𝑠) =
𝑚𝑎𝑥
𝑎𝜖𝐴

[𝑅(𝑠, 𝑎) + 𝛾 ∑ 𝑃(𝑠′|𝑠, 𝑎)𝑉𝑘(𝑠′)𝑠′] (3)

𝑉𝜋(𝑠) = 𝔼[𝑅(𝑠, 𝑎) + 𝛾𝑉𝜋(𝑠′)] (4)

Where ‘Vk(s)’ is the value function at iteration ‘k’. The process is repeated until the change in
the value function across iterations is smaller than a predefined threshold (convergence) [16,17].
Once the value function has converged, the optimal policy ‘π(s)’ can be derived by choosing the
action ‘a’ that maximizes the expected value at each state given by Eq. (5).

𝜋(𝑠) =
𝑎𝑟𝑔 𝑚𝑎𝑥

𝑎𝜖𝐴
[𝑅(𝑠, 𝑎) + 𝛾 ∑ 𝑃(𝑠′|𝑠, 𝑎)𝑉(𝑠′)𝑠′] (5)

This policy provides the optimal action for the vehicle to take from any state in the environment
[15,16]. This approach enables the vehicle to choose actions that maximize the probability of
successfully navigating to the destination while minimizing risks.

Spectrum of Operational Research

Volume 3, Issue 1 (2026) 215-237

219

4.3 Kalman filter for sensor fusion
The Kalman filter is a widely used stochastic model in control systems, particularly in scenarios

where systems are subject to noise. The Kalman filter estimates the state of a linear dynamic
system from noisy measurements [17,18]. Autonomous vehicles rely on multiple sensors (e.g.,
LIDAR, GPS, cameras) to estimate their position. However, each sensor has inherent noise and
uncertainty. A Kalman filter is used to fuse data from different sensors and estimate the vehicle’s
true position. Kalman Filter is a powerful recursive algorithm used for sensor fusion, where data
from multiple sensors is combined to estimate the state of a system (such as the position and
velocity of an autonomous vehicle, AV) in a more accurate and reliable manner [19]. In the context
of autonomous systems and robotics, Kalman filters are essential for handling noisy sensor data
and making precise estimations of the system's state. Kalman filters operate in two main steps.

• Prediction: Predict the next state of the system based on the current state and control input.

• Correction (Update): Update the prediction using the new sensor measurements to refine
the estimate.

The system model is given by Eq. (6) and Eq. (7).

𝑥𝑘+1 = 𝐴𝑥𝑘 + 𝐵𝑢𝑘 + 𝑤𝑘 (6)

yk = 𝐶𝑥𝑘 + 𝑣𝑘 (7)

Where,
• xk is the vehicle's state at time ‘k’ (e.g., position, velocity).
• uk is the control input (e.g., steering, acceleration).
• yk is the sensor measurement (e.g., GPS or LIDAR reading).
• wk and vk are process and measurement noise, respectively, modeled as Gaussian with zero

mean and covariance matrices ‘Q’ and ‘R’.
The Kalman filter recursively updates the state estimate 𝑥̂𝑘 as follows:

1. Prediction step

𝑥̂𝑘+1|𝑘 = 𝐴𝑥̂𝑘 + 𝐵𝑢𝑘 (8)

𝑃𝑘+1|𝑘 = 𝐴𝑃𝑘𝐴𝑇 + 𝑄 (9)

2. Update step

𝐾𝑘 = 𝑃𝑘+1|𝑘𝐶𝑇(𝐶𝑃𝑘+1|𝑘𝐶𝑇 + 𝑅)
−1

 (10)

𝑥̂𝑘|𝑘 = 𝑥̂𝑘+1|𝑘 + 𝐾𝑘(𝑦𝑘 − 𝐶𝑥̂𝑘+1|𝑘) (11)

𝑃𝑘|𝑘 = (𝐼 − 𝐾𝑘𝐶)𝑃𝑘+1|𝑘 (12)

Here, ‘𝐾𝑘’ is the Kalman gain that balances the contribution of the sensor measurements and
the model prediction. ‘𝑃𝑘|𝑘’ is the error covariance matrix, and ‘Q’, ‘R’ are noise covariance matrices

[20]. The Kalman filter is optimal under the assumption of Gaussian noise, making it a powerful tool
in robotics applications such as localization and navigation [20,21]. The Kalman filter reduces the
uncertainty in the position estimate by optimally combining noisy measurements from different
sensors.

The Kalman filter is based on a linear Gaussian model where the state transitions and
measurements are modeled as linear functions with Gaussian noise [21,22]. For an autonomous
vehicle, the state can include variables like position, velocity, and acceleration. The Kalman filter
uses this state to predict the vehicle’s motion and correct it with sensor data.

Spectrum of Operational Research

Volume 3, Issue 1 (2026) 215-237

220

4.3.1. State estimation
The system’s state at time ‘t’ is represented as a vector ‘xt’ shown by Eq. (13), which could

include variables like position, velocity, and orientation.

𝑋𝑡 = [

𝑥𝑡

𝑦𝑡

𝑣𝑥𝑡

𝑣𝑦𝑡

] (13)

Where,
• ‘xt’, ‘yt’ are the vehicle's positions in the 2D plane,
• ‘vxt’, ‘vyt’ are the velocities in the x and y directions.

4.3.2 System model
The system’s dynamics are governed by the state transition model, which describes how the

state evolves over time based on the control input ‘ut’ (e.g., acceleration or steering) and process
noise ‘wt’ [19,23]. The state transition is given by Eq. (14).

xt = Fxt−1 + But + wt (14)

Where,
• ‘F’ is the state transition matrix, which relates the previous state ‘xt−1’ to the current state.
• ‘B’ is the control input matrix, which relates the control input ‘ut’ to the state.
• ‘wt’ is the process noise, which accounts for uncertainties in the model.
For a vehicle with constant velocity, the state transition matrix ‘F’ might be expressed as Eq.

(15).

F = [

1
0
0
0

0
1
0
0

Δ𝑡
0
1
0

0
Δ𝑡
0
1

] (15)

Where, ‘Δt’ is the time interval between two consecutive updates [24]. This matrix indicates
that the position is updated based on the velocity over the time step ‘Δt’, while the velocity remains
constant.

4.3.3 Prediction step

In the prediction step, the Kalman filter estimates the next state of the system based on the
current state and control input [19,20]. The prediction for the next state ‘𝑥̂𝑡

−’ (prior estimate) is
given by Eq. (16).

𝑥̂𝑡
− = 𝐹𝑥̂𝑡−1 + 𝐵𝑢𝑡 (16)

The prediction for the error covariance matrix ‘𝑃𝑡
−’, which represents the uncertainty in the

state estimation, is given by Eq. (17).

𝑃𝑡
− = 𝐹𝑃𝑡−1𝐹𝑇 + 𝑄 (17)

Where,
• ‘Pt−1’ is the error covariance matrix from the previous time step,
• ‘Q’ is the process noise covariance matrix, which models the uncertainty in the system

dynamics.

Spectrum of Operational Research

Volume 3, Issue 1 (2026) 215-237

221

4.3.4 Measurement update (Correction step)
In the measurement update step, the filter uses new sensor measurements to correct the

predicted state [11,12]. The measurement model relates the actual sensor measurements ‘zt’ to the
state ‘xt’ using the measurement matrix ‘H’ as given by Eq. (18).

zt = Hxt + vt (18)

Where, ‘vt’ is the measurement noise [25]. For example, if the sensors provide direct
measurements of the vehicle’s position, the measurement matrix ‘H’ would be given by Eq. (19).

H = [
1
0

0
1

0
0

0
0

] (19)

This matrix indicates that only the position components ‘xt’ and ‘yt’ are directly measured.
The Kalman gain ‘Kt’, which determines how much the prediction should be adjusted based on

the measurement, is calculated using Eq. (20).

𝐾𝑡 = 𝑃𝑡
−𝐻𝑇(𝐻𝑃𝑡

−𝐻𝑇 + 𝑅)−1 (20)

Where, ‘R’ is the measurement noise covariance matrix, representing the uncertainty in the
sensor measurements [8,9]. The corrected estimate for the state ‘𝑥̂𝑡’ is given by Eq. (21) and the
updated error covariance matrix ‘Pt’ is given by Eq. (22).

𝑥̂𝑡 = 𝑥̂𝑡
− + 𝐾𝑡(𝑧𝑡 − 𝐻𝑥̂𝑡

−) (21)

𝑃𝑡 = (𝐼 − 𝐾𝑡𝐻)𝑃𝑡
− (22)

4.4 Monte Carlo Localization (MCL)

Monte Carlo methods are used to simulate the behavior of stochastic systems by sampling
random variables from a probability distribution. In robotics, Monte Carlo Localization (MCL) is a
popular algorithm used for probabilistic localization [22,26]. MCL represents the belief about a
robot’s position as a set of weighted samples or particles. MCL, also known as particle filter
localization, is a probabilistic algorithm used in robotics to estimate the position of a robot or
autonomous vehicle (AV) in a given environment. MCL is particularly useful in environments where
the robot's sensors provide uncertain or noisy data, such as urban traffic or unstructured terrain
[13,14]. It uses a set of particles (samples) to represent different possible locations of the robot,
refining this estimate over time based on sensor measurements and movement updates.

MCL relies on a particle filter, which uses a set of weighted particles to estimate the robot's
pose (position and orientation) [7,8]. Each particle represents a hypothesis about the robot's state,
and these hypotheses are updated iteratively through three steps. The algorithm proceeds as
follows,

i. Initialization (Sample generation): A set of particles is sampled from the probability
distribution representing the robot's belief about its location [5,6]. A set of particles is
initialized with random poses (position and orientation) across the environment.

ii. Prediction (Motion update): The particles are updated based on the robot’s motion
model [27]. Each particle’s position is updated based on the robot's motion model,
which estimates how the robot moves given its actions.

iii. Correction (Sensor update): Each particle is re-weighted based on the likelihood of its
position given the sensor data [3,4]. After the motion update, each particle is re-
weighted according to the likelihood of the observed sensor data, considering the
environment map.

Spectrum of Operational Research

Volume 3, Issue 1 (2026) 215-237

222

iv. Resampling: Particles with low weights are discarded, and new particles are drawn from
the remaining set [9]. Particles are resampled based on their weights, giving higher
weight particles a better chance of being selected, thereby focusing on the most likely
regions.

This process iteratively converges to a more accurate estimate of the robot’s position in the
environment, even in the presence of noise.

Monte Carlo Localization (MCL), also known as the particle filter, is a probabilistic method for
localizing a robot or vehicle in an environment [28]. In MCL, the vehicle’s belief about its position is
represented by a set of weighted particles, each corresponding to a possible state.

1. Initialization: A set of ‘N’ particles {x1, x2,…, xN} is sampled from the initial belief distribution.
2. Prediction: The state of each particle is updated based on the motion model shown by Eq.

(23).

𝑥𝑖
𝑡 = 𝑓(𝑥𝑖

𝑡−1, 𝑢𝑡) + 𝜖 (23)

Where, f(⋅) represents the motion model and ‘ϵ’ is Gaussian noise [10]. The weight of each
particle is updated based on the likelihood of the observed sensor data shown by Eq. (24).

𝑤𝑖
𝑡 ∝ 𝑝(𝑧𝑡|𝑥𝑖

𝑡) (24)

Where, 𝑝(𝑧𝑡|𝑥𝑖
𝑡) is the probability of the observation ‘zt’ given the particle’s state. Particles with

low weights are discarded, and new particles are sampled from the remaining set, with
replacement, based on their weights [29]. MCL allows the vehicle to maintain a probabilistic
estimate of its location, even in the presence of noisy sensors and complex environments. The
algorithm converges to the true position as more sensor data are collected.

4.4.1 Probability and weight calculation

Each particle ‘i’ has a weight ‘wi’, which represents how likely it is that this particle’s state
corresponds to the actual robot’s pose [18,19]. The weights are computed based on the sensor
measurements and the known map of the environment. The weight ‘wi’ of a particle ‘i’ is calculated
using Eq. (25).

𝑤𝑖 = 𝑝(𝑧𝑡|𝑥𝑡
𝑖 , 𝑚) (25)

Where,

• 𝑝(𝑧𝑡|𝑥𝑡
𝑖 , 𝑚) is the likelihood of observing sensor measurements ‘𝑧𝑡’ given the particle’s state

‘𝑥𝑡
𝑖’ and the map ‘m’.

• ‘𝑧𝑡’ represents the sensor data at time ‘t’,

• ‘𝑥𝑡
𝑖’ is the state (position and orientation) of particle ‘i’,

• ‘m’ is the map of the environment.
The weight of each particle is normalized so that the sum of all weights equals 1 as given by Eq.

(26).

𝑤𝑖 ⃪
𝑤𝑖

∑ 𝑤𝑗𝑗
 (26)

This normalization ensures that the particle weights represent probabilities, and it allows the
resampling process to focus on the most likely particles.

Spectrum of Operational Research

Volume 3, Issue 1 (2026) 215-237

223

4.4.2 Motion model update
As the robot moves, the motion model updates the position of each particle. This model is

probabilistic and accounts for the uncertainty in the robot’s movement due to factors like wheel

slippage, uneven terrain, or noisy actuators [21,22]. The updated position of each particle ‘𝑥𝑡
𝑖’ at

time ‘t’, given the previous position ‘𝑥𝑡−1
𝑖 ’ and action ‘ut’, is calculated using Eq. (27).

𝑥𝑡
𝑖 = 𝑚𝑜𝑡𝑖𝑜𝑛_𝑚𝑜𝑑𝑒𝑙(𝑥𝑡−1

𝑖 , 𝑢𝑡) + 𝜖 (27)

Where,

• ‘𝑥𝑡
𝑖’ is the new pose of particle ‘i’ at time ‘t’.

• ‘ut’ is the control action (e.g., velocity, steering angle) taken by the robot.
• ‘ϵ’ represents noise in the motion model (e.g., due to wheel slippage or sensor errors).
In practical terms, if the robot moves forward by a certain distance, each particle’s position is

updated to reflect this movement, but with slight randomness to account for uncertainty [30].

4.4.3 Sensor model update
The sensor model compares the robot's sensor readings (e.g., from LIDAR, radar, or cameras) to

the expected readings from the environment map for each particle's state [5,6]. For instance, if the
robot uses a LIDAR sensor to detect distances to nearby objects, the algorithm checks how closely
the predicted distances (based on the particle’s state) match the actual sensor readings. The sensor

model calculates the likelihood 𝑝(𝑧𝑡|𝑥𝑡
𝑖 , 𝑚) by comparing the actual sensor data ‘zt’ with the

expected data from the map [20]. A common approach is to use Gaussian distributions to model
the sensor noise as given by Eq. (28).

𝑝(𝑧𝑡|𝑥𝑡
𝑖 , 𝑚) = ∏ 𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛(𝑧𝑡

𝑘 − 𝑧̂𝑡
𝑘(𝑥𝑡

𝑖), 𝜎2)𝑘 (28)

Where,

• ‘𝑧𝑡
𝑘’ is the actual sensor reading for the k-th sensor at time ‘t’.

• ‘𝑧̂𝑡
𝑘(𝑥𝑡

𝑖)’ is the predicted sensor reading based on particle ‘i’ state.

• ‘σ2’ is the variance of the sensor noise (uncertainty).
Particles whose predicted sensor readings closely match the actual sensor data receive higher

weights, indicating that they are better candidates for the robot’s actual position.
Once the weights have been updated, resampling is performed. The idea is to replace low-

weight particles with copies of high-weight particles, effectively concentrating the particle set
around the most probable regions [31,32]. Particles with higher weights have a higher chance of
being selected during resampling, which improves localization accuracy by focusing on areas where
the robot is more likely to be. The resampling step is crucial for preventing the particle set from
becoming degenerate, where only a few particles carry significant weight while others have almost
none.

4.5 Stochastic models for multi-agent systems

In multi-agent systems, stochastic models are used to simulate interactions between
autonomous agents operating in shared environments. A stochastic game (also known as a Markov
game) is an extension of MDPs to multi-agent settings [12,13,16]. In such a game, multiple agents
choose actions, and the environment transitions to a new state based on the joint actions of all
agents. The mathematical formulation of a stochastic game is given by Eq. (29).

G = (𝑁, 𝑆, {𝐴𝑖}𝑖=1
𝑁 , {𝑃𝑖}𝑖=1

𝑁 , {𝑅𝑖}𝑖=1
𝑁) (29)

Spectrum of Operational Research

Volume 3, Issue 1 (2026) 215-237

224

Where,
• ‘N’ is the number of agents.
• ‘S’ is the set of states.
• ‘Ai’ is the action space of agent ‘i’.
• P(s′∣s, a1,…, aN) is the transition probability given actions from all agents.
• Ri(s, a1,…, aN) is the reward function for agent ‘i’.
In multi-agent robotics (e.g., drone swarms or collaborative robots), stochastic games can be

used to model cooperation or competition under uncertainty [33]. Q-learning and Nash equilibrium
are often employed to solve these games, enabling agents to learn optimal policies.

5. Case study: Autonomous vehicle in urban navigation
5.1 Scenario description

In this case study, an autonomous vehicle must navigate a busy urban area with multiple
obstacles, including pedestrians, parked vehicles, and moving cars. The vehicle has access to GPS,
LIDAR, and cameras, but each sensor has limitations [34]. GPS signals may be weak in urban
canyons, LIDAR data might be affected by occlusions, and camera images could suffer from poor
lighting conditions.

5.2 Problem statement

Consider an autonomous vehicle navigating through an urban environment. The vehicle must be
compatible with the below three scenarios.

• Plan an optimal path to a given destination while avoiding dynamic obstacles (e.g., other
cars and pedestrians).

• Maintain accurate localization despite sensor noise and occlusions.

• Fuse data from multiple sensors, such as LIDAR, cameras, and GPS, to reduce uncertainty in
position estimation.

These tasks are subject to various uncertainties as follows.

• Environmental uncertainties, such as changing traffic patterns, weather conditions, and
unpredictable behaviors of other road users.

• Sensor uncertainties, such as noisy LIDAR readings or GPS signal errors.
To address these challenges, we employ stochastic models for path planning, localization, and

sensor fusion.

5.3 Path planning with MDP

We model the urban road network as a grid, where each cell represents a possible vehicle state
(position). The MDP defines the transition probabilities based on traffic flow data, road conditions,
and the likelihood of pedestrian crossings. The reward function penalizes collisions and excessive
travel time. Using the value iteration algorithm, we compute the optimal policy for the vehicle [35].
The value function converges after a few iterations, giving the vehicle the best actions to take at
each grid cell to minimize risk and reach its destination efficiently. In this case, the urban grid is
modeled as an MDP where each grid cell represents a state ‘s’, and the vehicle can take actions ‘a’
such as moving forward, turning left, or turning right. The goal is to compute the optimal policy that
minimizes travel time while avoiding collisions. Consider an autonomous vehicle navigating a grid-
based urban environment. Each position on the grid represents a state ‘s’, and the actions ‘a’ are
the possible movements: forward, left, right or stop. The transition probabilities P(s′∣s, a) represent
the likelihood of moving from one grid cell to another, factoring in uncertainties like traffic,
obstacles, or sudden changes in road conditions [36]. The reward function R(s, a) assigns positive

Spectrum of Operational Research

Volume 3, Issue 1 (2026) 215-237

225

rewards for moving closer to the destination and negative rewards for collisions or time delays. The
following are the example parameters

• States: S = {s1, s2, s3,…, sN} (grid cells) representing the vehicle's position.

• Actions: A = {forward, left, right, stop}.

• Reward function: R(s, a) = {−1 (penalty for travel time), −100 (penalty for collision),
0 (reward for safe transition)}. R(s, a) is -1 for each move to simulate the cost of time, -10 for
a collision with an obstacle, and +100 for reaching the goal.

• Transition probabilities: P(s′ ∣ s, a) are based on traffic and environmental uncertainties.
P(s′∣s, a), where transitions are uncertain due to traffic conditions or obstacles (e.g., P(s′∣s, a)
= 0.9 for moving to the intended direction, and 0.1 for unintended deviations).

Let’s assume,
• Grid size: 3 x 3 (9 states)
• Discount factor: γ = 0.9. The discount factor γ = 0.9 represents the vehicle considering the

future rewards but prioritizes immediate moves.
• For simplicity, only 3 states and 2 actions have been considered (forward and stop).
For state ‘s1’, using Eq. (2) the Bellman equation would compute the value function as follows.

𝑉(𝑠) =
𝑚𝑎𝑥
𝑎𝜖𝐴

[𝑅(𝑠, 𝑎) + 0.9 ∑ 𝑃(𝑠′|𝑠, 𝑎)𝑉(𝑠′)

𝑠′

]

Let’s assume the action “move right” yields the highest expected value based on rewards and
future state values [37]. The updated value function at state ‘s1’ would be stored, and the process
repeats for all other states until convergence.

Initially, assuming that V(s) = 0 for all states. Conducting iteration 1 by considering state ‘s1’ and
actions a = forward, stop. Suppose the transition probabilities are as follows.

• P(s2∣s1, forward) = 0.8

• P(s3∣s1, forward) = 0.2
If we take action forward in ‘s1’, the immediate reward R(s1, forward) = −1 (penalty for time

taken), and the expected future reward is given as follows.

V(s1) = max [−1 + 0.9 × (0.8 × V(s2) + 0.2 × V(s3)), R(s1, stop)]

Assuming R(s1, stop) = −10 (penalty for stopping)

V(s1) = max [−1 + 0.9 × (0.8 × 0 + 0.2 × 0), −10]

V(s1) = max [−1, −10] = −1

The value function for ‘s1’ is updated to V(s1) = −1. Similarly, conducting iteration 2 by repeating
the process for ‘s2’ and ‘s3’ and update their value functions. After multiple iterations, the value
functions converge, and the optimal policy ‘π∗(s)’ is derived by selecting the action that maximizes
the expected cumulative reward at each state [38]. After running the value iteration algorithm, the
value function converges, and the optimal policy ‘π(s)’ is derived for each state. The policy instructs
the vehicle to take the most rewarding actions at every step.

By following the optimal policy, the autonomous vehicle reduces its average travel time by 15%
compared to deterministic planners. This improvement is achieved because the vehicle anticipates
and navigates around uncertain elements (e.g., traffic or obstacles) more effectively. The MDP
ensures that the vehicle adapts to uncertainties in real time, maintaining an optimal course even
when conditions deviate from the ideal scenario [36,37]. The reward structure penalizes collisions
heavily, so the vehicle’s policy avoids risky states, reducing the probability of collisions with

Spectrum of Operational Research

Volume 3, Issue 1 (2026) 215-237

226

obstacles or other vehicles. The MDP-based approach for path planning enables autonomous
systems to navigate uncertain environments by considering both immediate and future rewards.
The value iteration method computes an optimal policy that improves navigation efficiency by
reducing travel time and enhancing decision-making under uncertainty. This approach is especially
valuable in dynamic environments like urban traffic, where unpredictability is common [39]. The
use of MDPs results in safer, faster, and more reliable navigation, making them an essential tool in
the development of autonomous vehicles.

5.4 Sensor fusion with Kalman filter

The Kalman filter fuses data from GPS, LIDAR, and camera sensors to estimate the vehicle’s
position. The predicted position from the vehicle's motion model is corrected using the Kalman
gain, which incorporates sensor measurements [40]. The Kalman filter significantly reduces the
position estimation error compared to relying on any single sensor.

The Kalman filter is used to estimate the vehicle's state by combining noisy sensor
measurements (e.g., GPS, LIDAR) with a motion model. The prediction equations are given by Eq.
(8) and Eq. (9). Suppose the vehicle’s state is its position ‘xk’ at time ‘k’, and the motion model is
given by Eq. (30).

𝑥𝑘+1 = 𝑥𝑘 + 𝑢𝑘 + 𝑤𝑘 (30)

Let 𝑥̂𝑘 = 5 meters, uk = 1 meter, and process noise wk ∼ Ɲ (0, 0.1). The predicted state is
computed as follows.

𝑥̂𝑘+1|𝑘 = 5 + 1 = 6 𝑚𝑒𝑡𝑟𝑒𝑠

The prediction covariance given by Eq. (9) is updated as given by Eq. (31).

𝑃𝑘+1|𝑘 = 𝑃𝑘 + 𝑄 (31)

Where, Pk = 0.1 (previous estimate uncertainty) and Q = 0.05 (process noise covariance).

𝑃𝑘+1|𝑘 = 0.1 + 0.05 = 0.15

Similarly, the Kalman gain is given by Eq. (10). For simplicity, assume C = 1, and measurement
noise covariance R = 0.2.

𝐾𝑘 =
0.15

0.15 + 0.2
=

0.15

0.35
≈ 0.429

Therefore, the updated state estimate is given by Eq. (32).

𝑥̂𝑘+1 = 𝑥̂𝑘+1|𝑘 + 𝐾𝑘(𝑦𝑘+1 − 𝐶𝑥̂𝑘+1|𝑘) (32)

Now, if the new GPS measurement 𝑦𝑘+1 = 5.8 meters, the ‘𝑥̂𝑘+1’ may be computed as follows.

𝑥̂𝑘+1 = 6 + 0.429 (5.8 – 6) = 6 + 0.429 × (−0.2) = 6 − 0.0858 = 5.914

Thus, the updated position estimate is 5.914 meters. Let’s consider an autonomous vehicle that
uses both GPS and LIDAR sensors to estimate its position in a 2D environment [41]. GPS provides
noisy position measurements, while LIDAR provides more precise measurements but only within a
short range.

i. Initialization

Spectrum of Operational Research

Volume 3, Issue 1 (2026) 215-237

227

• The vehicle’s initial state is 𝑥0 = [

0
0
0
0

], representing its position and velocity in both the x and

y directions.

• The initial error covariance matrix ‘P0’ is set to a large value, indicating high uncertainty in
the initial state.

ii. Prediction
• The vehicle moves forward with a constant velocity of 1 m/s in both the x and y directions.

The control input ‘ut’ represents the vehicle’s acceleration, which is assumed to be zero
(constant velocity).

• The state transition matrix ‘F’ shown in Eq. (14) is used to predict the new position and
velocity using Eq. (15). However, the updated equation is shown by Eq. (33).

𝑥̂𝑡
− = 𝐹𝑥̂𝑡−1 (33)

Suppose the vehicle was at position (5, 5) at the last time step. After moving for 1 second,
the new predicted position would be (6, 6).

• The error covariance matrix ‘𝑃𝑡
−’ is updated to reflect the uncertainty in the prediction.

iii. Measurement Update

• The GPS sensor provides a noisy position measurement 𝑧𝑡 = [
6.1
6.2

], while the LIDAR sensor

gives a more precise measurement 𝑧𝑡 = [
5.9
6.0

].

• The Kalman gain ‘Kt’ is calculated to determine how much the predicted state should be
adjusted based on these measurements. Because the LIDAR sensor is more accurate, its
measurement will have more influence on the update [40,41]. Using the Kalman gain, the
predicted state ‘𝑥̂𝑡’ is corrected as given by Eq. (21). After applying the Kalman gain, the
corrected position might be (6.0,6.1), reflecting a more accurate estimation based on both
GPS and LIDAR measurements.

iv. Error Covariance Update

• The error covariance matrix ‘Pt’ is updated to reflect the reduced uncertainty after the
correction step.

By combining data from multiple sensors, the Kalman filter produces a more accurate estimate
of the vehicle’s position than either sensor could provide individually. The position estimate is more
accurate than either the GPS or LIDAR measurements alone, with an error reduced to less than 0.2
meters in this example [36]. The Kalman filter reduces the uncertainty in the position estimate, as
reflected by the updated error covariance matrix ‘𝑃𝑡’. This reduction in uncertainty helps the
vehicle make more reliable decisions about navigation and path planning. The filter dynamically
adjusts to changing sensor conditions, giving more weight to more accurate sensors in different
situations. For example, if the GPS signal becomes weaker or noisier, the filter will rely more heavily
on the LIDAR data. The Kalman filter provides a robust framework for sensor fusion in autonomous
systems [37,38]. By leveraging data from multiple sensors, it improves the accuracy of state
estimation (such as position and velocity) and reduces the uncertainty in the system’s state. This
makes it highly effective for applications like autonomous vehicle navigation, where reliable real-
time state estimation is critical.

Spectrum of Operational Research

Volume 3, Issue 1 (2026) 215-237

228

5.5 Localization with MCL
The vehicle initializes 1000 particles representing its possible locations. As it moves, the MCL

algorithm updates the particle weights based on the LIDAR and camera data, resampling particles
to focus on the most likely locations. Over time, the particles converge around the vehicle's true
position, allowing for accurate localization despite noisy GPS signals [40,41]. MCL estimates the
position of the autonomous vehicle by maintaining a set of particles {x1, x2,…, xN}, each representing
a possible position.

5.5.1 Prediction step

Each particle's position is updated based on the motion model. For example, if the vehicle
moves forward with control input ‘ut’, the new position of particle ‘xi’ is given by Eq. (34).

𝑥𝑖
𝑡+1 = 𝑥𝑖

𝑡 + 𝑢𝑡 + 𝜖 (34)

Where, ‘ϵ’ is a random variable representing Gaussian noise with mean 0 and variance ‘σ2’. If ut
= 1 meter and the noise ϵ ∼ Ɲ (0, 0.1), we update each particle as shown in Eq. (35).

𝑥𝑖
𝑡+1 = 𝑥𝑖

𝑡 + 1 + 𝜖𝑖 (35)

For instance, if a particle’s initial position is 𝑥1
𝑡 = 5 meters, the new position after the control

input is given as follows.

𝑥1
𝑡+1 = 5 + 1 + 0.05 = 6.05 meters

5.5.2 Weight update

Each particle is assigned a weight ‘𝑤𝑖
𝑡’ based on the likelihood of the observation ‘𝑧𝑡’ given the

particle’s state by Eq. (24). For example, if the observed position from LIDAR is 𝑧𝑡 = 6 meters and
the measurement model is Gaussian with mean ‘𝑥𝑖

𝑡’ and variance 𝜎𝑧
2 = 0.1, the weight is calculated

as follows.

𝑤𝑖
𝑡 ∝

1

√2𝜋𝜎𝑧
2

𝑒𝑥𝑝 (−
(𝑧𝑡 − 𝑥𝑖

𝑡)2

2𝜎𝑧
2

)

Substituting 𝑧𝑡 = 6, 𝑥𝑖
𝑡 = 6.05 and 𝜎𝑧 = 0.1.

𝑤1
𝑡 ∝

1

√2𝜋 × 0.1
𝑒𝑥𝑝 (−

(6 − 6.05)2

2 × 0.1
)

𝑤1
𝑡 ∝

1

√0.628
𝑒𝑥𝑝 (−

0.0025

0.2
)

𝑤1
𝑡 ∝ 1.261 × exp (−0.0125) ≈ 1.261 × 0.9876 = 1.245

The weights are normalized and used to resample particles. Particles with higher weights are
selected with greater probability, and the process is repeated to refine the vehicle’s position
estimate [33,34]. After several iterations, the particle set converges around the true position.

Let’s consider an example where an autonomous vehicle (AV) is navigating a grid-based
environment with noisy LIDAR sensors [31]. The goal of the AV is to estimate its position on a 10x10
grid.
i. Initialization

• 1000 particles are initialized randomly across the grid, each representing a possible position
and orientation for the AV.

Spectrum of Operational Research

Volume 3, Issue 1 (2026) 215-237

229

ii. Motion update

• The AV moves forward by 1 meter.

• Each particle’s position is updated based on the motion model. Due to noise, the particles
spread out slightly, accounting for uncertainty in the movement.

For example, if the AV moves from position (5,5) to (6,5), the new positions of the particles will
be around (6,5), but with small deviations due to motion noise.

iii. Sensor update

• The AV’s LIDAR sensor detects obstacles at distances of 2 meters to the left and 3 meters to
the right.

• For each particle, the predicted LIDAR readings are compared to the actual sensor readings.
Particles whose predicted readings match the actual readings are given higher weights.
Suppose particle ‘i’ is at position (6,5) and predicts LIDAR distances of 2 meters to the left
and 3 meters to the right, matching the sensor data. This particle will receive a high weight.

iv. Resampling

• Particles with higher weights (e.g., those near position (6,5)) are selected more frequently
during resampling. Low-weight particles are replaced by copies of high-weight particles,
concentrating the particle set around the most likely positions.

v. Repeat

• The process is repeated as the AV continues to move and collect sensor data. Over time, the
particle cloud converges around the true position of the AV.

The effectiveness of Monte Carlo Localization is reflected in its ability to handle noisy sensor
data and uncertain movements. After multiple iterations, the particle set converges to a small area
around the AV’s true location, yielding accurate position estimates even in the presence of
uncertainty [33,34]. The localization error is reduced to less than 0.5 meters after a few iterations,
even with noisy sensor data and uncertain movements. This demonstrates MCL's robustness in
handling real-world uncertainties. MCL performs well in environments with significant sensor noise
or imperfect motion models. The resampling step ensures that the localization remains accurate
over time, focusing on the most likely regions. The AV is able to localize itself in real time by
maintaining a dynamic set of particles that adapt to new sensor data and movement updates [29].
The computational efficiency of particle filters makes them suitable for real-time applications in
robotics. Monte Carlo Localization offers a powerful probabilistic framework for estimating the
position of autonomous systems in uncertain and dynamic environments. By maintaining and
updating a set of weighted particles, MCL can handle noisy sensor data and uncertain motion
models, allowing autonomous vehicles to navigate reliably [23,24]. The use of resampling helps
focus the estimation on the most probable regions, ensuring accurate localization over time.

6. Results and discussion

The analysis of stochastic models in autonomous systems and robotics yielded several
important findings, especially in the domains of path planning, localization, and sensor fusion.
These results emphasize the utility of probabilistic approaches in handling uncertainties in real-
world environments, particularly for autonomous vehicles (AVs). This section discusses about the
core outcome results in detail, highlighting their significance and broader implications for the field
of robotics. The below points summarizes the key results obtained from the entire analysis.

i. Path planning: The MDP-based approach successfully guides the vehicle through the
urban environment, avoiding collisions and optimizing travel time. Simulations show
that the MDP algorithm reduces the average travel time by 15% compared to a

Spectrum of Operational Research

Volume 3, Issue 1 (2026) 215-237

230

deterministic planner. The MDP-based value iteration successfully computes the optimal
policy for navigating the grid.

ii. Localization: Monte Carlo localization achieves a localization error of less than 0.5
meters after 100 iterations, even when GPS signals are weak or unavailable. Monte Carlo
localization reduces the vehicle's position uncertainty through particle updates and
resampling.

iii. Sensor fusion: The Kalman filter reduces position estimation error by 20% compared to
using GPS alone, demonstrating the effectiveness of sensor fusion in noisy
environments. The Kalman filter effectively combines sensor data, reducing the error in
position estimation. The position estimate converges to a more accurate value after
each update step.

Through the application of MDPs, the study demonstrates that AVs can effectively navigate
complex and uncertain urban environments by optimizing decision-making processes. In this case
study, the MDP-based algorithm achieved a 15% reduction in average travel time compared to
traditional deterministic planners. This improvement is primarily attributed to the MDP’s ability to
consider not only the immediate actions but also the long-term effects of those actions under
uncertainty. MDPs enable autonomous systems to factor in future uncertainties, such as changes in
traffic patterns, unexpected obstacles, or other dynamic conditions, by calculating the expected
utility of different actions. The value iteration algorithm used in MDPs allows the AV to explore
various future states and make more informed decisions. The result shows that, unlike
deterministic planners that assume a perfectly predictable environment, MDPs provide a robust
framework that significantly improves navigation efficiency, particularly when AVs operate in
congested, dynamic urban spaces. This also has broader implications for real-world autonomous
navigation, where conditions are often unpredictable. The reduction in travel time not only
optimizes operational efficiency but also reduces energy consumption and enhances the overall
user experience.

The Kalman filter implementation for sensor fusion effectively reduced the position estimation
error by 20% compared to using GPS data alone. By combining multiple sensor inputs, such as GPS
and LIDAR, the Kalman filter provided a more accurate and reliable estimate of the AV’s position.
Sensor fusion is a crucial technique in autonomous systems for improving reliability, particularly
when operating in noisy environments. The Kalman filter optimally combines data from multiple
sensors, taking into account the uncertainties associated with each sensor’s measurements. In this
case, GPS data alone was insufficient for accurate localization due to potential signal noise or
interference. However, when fused with LIDAR data, the AV was able to significantly improve its
position estimate, demonstrating the power of sensor fusion to compensate for the weaknesses of
individual sensors. The reduction in estimation error by 20% is noteworthy, as it directly translates
to improved decision-making accuracy for the AV. In real-world applications, this accuracy is critical
for navigation in environments such as urban streets, where small positioning errors can result in
collisions or violations of traffic rules. Additionally, the ability to rely on multiple sensors increases
the system's resilience to sensor failures, further enhancing the safety and reliability of
autonomous navigation.

The analysis shows that MCL successfully reduces the localization error of the AV to less than
0.5 meters after 100 iterations, even in scenarios where GPS signals are weak or unavailable. By
leveraging probabilistic sampling and resampling techniques, the MCL algorithm continuously
refines the vehicle’s estimated position as it gathers new sensor data from sources like LIDAR and
inertial measurement units (IMUs). Monte Carlo localization proves essential in situations where
sensor measurements are noisy or unreliable. Rather than relying on a single point estimate of the

Spectrum of Operational Research

Volume 3, Issue 1 (2026) 215-237

231

vehicle’s position, MCL uses a set of particles (or hypotheses) to represent potential locations,
allowing it to handle ambiguity and noise effectively. Each particle is updated based on the motion
model and the likelihood of observed data and the most likely set of particles emerges as the best
estimate of the vehicle’s position. The reduction of localization error to less than 0.5 meters is
significant, as this level of accuracy is crucial for autonomous systems operating in congested areas,
where precise positioning is needed to avoid collisions or to ensure the vehicle remains within its
designated lane. The application of MCL also addresses the problem of GPS failure, demonstrating
that AVs can maintain accurate positioning even in GPS-denied environments, such as tunnels or
urban canyons, enhancing the robustness of the system. The key results and outcomes of the
detailed mathematical computations have been summarized in Table 2.

Table 2
Summary of the key results.

Aspect Methodology Computation/Outcome Key result

Path Planning
MDP with value
iteration

Value iteration, Bellman
equation: V(s1) = max[−1,−10]
= −1,
Travel time reduced by 15%

Optimal policy derived by maximizing expected
cumulative reward. Optimized path planning in
urban traffic.

MDP
Performance

Simulations with
urban grid

Discount factor γ = 0.9,
penalty for collision and time

Reduced travel time by 15% compared to
deterministic planner.

Localization
Accuracy

MCL

Particle prediction: 𝑥1
𝑡+1 =

6.05 meters,
Localization error reduced to
< 0.5 meters

Position localization error reduced to < 0.5
meters after 100 iterations. Accurate
positioning despite uncertain sensor data.

Particle
Weight
Update

Measurement
likelihood with
LIDAR

Weight calculation: 𝑤1
𝑡 =

1.245
Particles converge around true position,
refining the vehicle’s estimate.

Resampling
Importance
sampling for
particle set

Resample particles based on
likelihood

Final particle set converges to true vehicle
position.

Sensor Fusion Kalman Filter

Predicted state: 𝑥̂𝑘+1|𝑘,

Position estimation error
reduced by 20%

In this case, the prediction suggests that the
system will be at 6 meters along a given axis
(e.g., along the x-axis or a specific path) at time
k+1. Improved reliability in noisy environments

Kalman Gain
Gain
computation: Kk ≈
0.429

Updated position: 𝑥̂𝑘+1 =
5.914 meters

More accurate position estimate using Kalman
filter.

(Source: Author’s own elaboration)

6.1 Results from MDP

After running the value iteration algorithm, the value function converges, and the optimal policy
‘π(s)’ is derived for each state. The policy instructs the vehicle to take the most rewarding actions at
every step.

1. Reduced travel time: By following the optimal policy, the autonomous vehicle reduces its
average travel time by 15% compared to deterministic planners. This improvement is
achieved because the vehicle anticipates and navigates around uncertain elements (e.g.,
traffic or obstacles) more effectively.

2. Robust navigation: The MDP ensures that the vehicle adapts to uncertainties in real time,
maintaining an optimal course even when conditions deviate from the ideal scenario.

3. Minimized collisions: The reward structure penalizes collisions heavily, so the vehicle’s policy
avoids risky states, reducing the probability of collisions with obstacles or other vehicles.

Spectrum of Operational Research

Volume 3, Issue 1 (2026) 215-237

232

The MDP-based approach for path planning enables autonomous systems to navigate uncertain
environments by considering both immediate and future rewards. The value iteration method
computes an optimal policy that improves navigation efficiency by reducing travel time and
enhancing decision-making under uncertainty. This approach is especially valuable in dynamic
environments like urban traffic, where unpredictability is common. The use of MDPs results in
safer, faster, and more reliable navigation, making them an essential tool in the development of
autonomous vehicles.

6.2 Results from sensor fusion with Kalman filter

By combining data from multiple sensors, the Kalman filter produces a more accurate estimate
of the vehicle’s position than either sensor could provide individually.

1. Improved accuracy: The position estimate is more accurate than either the GPS or LIDAR
measurements alone, with an error reduced to less than 0.2 meters in this example.

2. Reduced uncertainty: The Kalman filter reduces the uncertainty in the position estimate, as
reflected by the updated error covariance matrix ‘Pt’. This reduction in uncertainty helps the
vehicle make more reliable decisions about navigation and path planning.

3. Dynamic adaptation: The filter dynamically adjusts to changing sensor conditions, giving
more weight to more accurate sensors in different situations. For example, if the GPS signal
becomes weaker or noisier, the filter will rely more heavily on the LIDAR data.

The Kalman filter provides a robust framework for sensor fusion in autonomous systems. By
leveraging data from multiple sensors, it improves the accuracy of state estimation (such as
position and velocity) and reduces the uncertainty in the system’s state. This makes it highly
effective for applications like autonomous vehicle navigation, where reliable real-time state
estimation is critical.

6.3 Results from MCL

The effectiveness of Monte Carlo Localization is reflected in its ability to handle noisy sensor
data and uncertain movements. After multiple iterations, the particle set converges to a small area
around the AV’s true location, yielding accurate position estimates even in the presence of
uncertainty.

i. Improved localization accuracy: The localization error is reduced to less than 0.5 meters
after a few iterations, even with noisy sensor data and uncertain movements. This
demonstrates MCL's robustness in handling real-world uncertainties.

ii. Resilience to noise: MCL performs well in environments with significant sensor noise or
imperfect motion models. The resampling step ensures that the localization remains
accurate over time, focusing on the most likely regions.

iii. Real-time performance: The AV is able to localize itself in real time by maintaining a
dynamic set of particles that adapt to new sensor data and movement updates. The
computational efficiency of particle filters makes them suitable for real-time
applications in robotics.

Monte Carlo Localization offers a powerful probabilistic framework for estimating the position
of autonomous systems in uncertain and dynamic environments. By maintaining and updating a set
of weighted particles, MCL can handle noisy sensor data and uncertain motion models, allowing
autonomous vehicles to navigate reliably. The use of resampling helps focus the estimation on the
most probable regions, ensuring accurate localization over time.

Spectrum of Operational Research

Volume 3, Issue 1 (2026) 215-237

233

6.4 Combined impact of stochastic models on autonomous systems
The collective use of MDPs for path planning, MCL for localization and Kalman filters for sensor

fusion showcases a comprehensive approach to addressing the uncertainty challenges in
autonomous systems. The results of the analysis demonstrate that integrating stochastic models
allows AVs to make informed decisions, accurately localize themselves, and operate safely in
unpredictable environments. Below are some of the broader outcomes from the combination of
these methods.

i. Improved decision-making: The MDP model’s ability to reduce travel time by considering
future uncertainties represents a significant advancement in AV navigation. This is
particularly important in real-time applications, where AVs must adapt to changing
environments swiftly.

ii. Enhanced localization accuracy: The use of MCL, which reduced the localization error to
less than 0.5 meters, ensures that the AV can navigate congested areas with minimal risk
of deviation from its intended path, even in the absence of reliable GPS data.

iii. Robustness and reliability: The Kalman filter’s 20% reduction in position estimation error
emphasizes the importance of sensor fusion in creating robust systems that are less
prone to sensor failure or inaccuracies. This, combined with the benefits of MDP and
MCL, enables autonomous systems to maintain reliable performance even under harsh
environmental conditions.

iv. Safety improvements: These results directly contribute to the enhancement of safety in
AV systems, reducing the likelihood of accidents caused by navigation errors, poor
localization, or sensor noise.

7. Conclusion

The results obtained from the analysis of stochastic models in this case study highlight the
critical role these probabilistic methods play in the successful navigation, localization, and decision-
making processes of autonomous systems. By using MDPs, Monte Carlo methods, and Kalman
filters, autonomous vehicles can not only navigate more efficiently but also handle uncertainties in
real-world scenarios more effectively. The 15% reduction in travel time, less than 0.5-meter
localization error, and 20% improvement in position estimation showcase how these models
significantly improve both the performance and safety of autonomous systems, making them
better suited to operate in complex and dynamic environments like urban traffic. These outcomes
set a foundation for further research and development in the application of stochastic models in
robotics, enhancing the adaptability and robustness of future autonomous systems.

This research on Stochastic Models for Autonomous Systems and Robotics has extensively
explored the role of probabilistic methods, such as MDPs, MCL, and Kalman filters, in improving the
performance, adaptability, and reliability of autonomous systems in uncertain environments. By
addressing the inherent randomness and variability in both system behavior and environmental
conditions, stochastic modeling techniques offer a mathematically rigorous framework that
enhances decision-making, navigation, task execution, and sensor fusion for robots and AVs. One of
the central findings of this research is that stochastic models are indispensable for addressing
uncertainty in autonomous systems. Real-world environments are often unpredictable, with
varying traffic conditions, fluctuating sensor reliability, and incomplete knowledge of surroundings.
Stochastic modeling provides the necessary tools to represent and manage this uncertainty.

The MDP-based path planning demonstrated how an AV could optimize its route in a stochastic
environment, balancing short-term and long-term risks and rewards. The mathematical formulation
using transition matrices and reward functions provided a structured way to manage uncertainties,

Spectrum of Operational Research

Volume 3, Issue 1 (2026) 215-237

234

such as dynamic obstacles or unexpected detours. These are crucial for path planning in scenarios
with probabilistic outcomes, enabling AVs to make optimized decisions by considering the
likelihood of different environmental states. By incorporating reward functions and transition
probabilities, MDPs allow robots to select actions that maximize long-term gains in environments
with random events, such as unpredictable traffic flows or road conditions.

The MCL simulations showed how stochastic sampling methods can effectively estimate a
robot’s position by continuously updating hypotheses and narrowing down the most likely positions
over time. The analysis illustrated the convergence of the localization process as the number of
samples increased, ensuring accurate positioning even in complex urban environments. This
approach effectively tackles the challenge of localization by sampling multiple hypotheses of a
robot's position and then refining these estimates based on sensor data. MCL’s ability to operate in
non-Gaussian and highly uncertain environments makes it robust for AV navigation, especially in
urban areas where GPS signals might be weak or distorted. The mathematical analysis showed that
the MCL algorithm, through iterative sampling and convergence, helps the AV continuously refine
its position estimate, improving navigation accuracy.

The Kalman filter’s sensor fusion process was illustrated through detailed calculations showing
how noisy sensor data from GPS and LIDAR could be fused to produce more reliable estimates of a
vehicle's position. The recursive nature of the Kalman filter helped reduce uncertainty over time,
making the vehicle’s navigation decisions more robust. Sensor fusion with Kalman filters ensures
that autonomous systems can combine multiple, noisy sensor measurements (e.g., GPS and LIDAR)
to produce a more accurate and reliable estimate of the system’s state (such as position and
velocity). The filter’s ability to continuously correct predictions with real-time sensor data
significantly enhances the robustness of the AV's navigation, particularly in dynamic and uncertain
environments. The recursive nature of Kalman filters makes them efficient for real-time
applications, where quick adaptation to noisy data is essential.

Stochastic models are becoming indispensable tools in the development of autonomous
systems and robotics. By incorporating uncertainty into decision-making, navigation, and task
execution, these models enable robots to operate more reliably in dynamic and unpredictable
environments. The integration of stochastic models with artificial intelligence and machine learning
is pushing the boundaries of what autonomous systems can achieve. However, challenges related
to computational complexity and real-time implementation remain, providing fertile ground for
future research. In summary, stochastic models are essential for dealing with uncertainties in
autonomous systems and robotics. Through mathematical and computational techniques such as
MDPs, Kalman filters, and Monte Carlo methods, robots can operate effectively in unpredictable
environments. The integration of these models with machine learning is opening new avenues for
more intelligent and adaptable systems. However, challenges such as computational complexity
and real-time implementation remain, offering opportunities for future research.

7.1 Managerial implications

The findings from this research offer several important implications for managers and decision-
makers in industries relying on autonomous systems, particularly in transportation, logistics, and
urban planning. The integration of stochastic models, such as MDPs, Monte Carlo localization, and
Kalman filters, can enhance the performance and safety of AVs, making them more reliable for real-
world operations. Managers can leverage these models to optimize AV routes, reduce operational
costs by improving navigation efficiency, and minimize risks in uncertain environments. The
demonstrated improvement in decision-making and localization accuracy can encourage companies

Spectrum of Operational Research

Volume 3, Issue 1 (2026) 215-237

235

to invest in more sophisticated autonomous systems, enhancing their competitiveness and
operational resilience.

7.2 Theoretical contributions
This research contributes to the theoretical foundation of stochastic models applied in

autonomous systems and robotics by showcasing how these methods can address real-world
uncertainties. The study advances the understanding of how probabilistic approaches, like MDPs
for path planning and Kalman filters for sensor fusion, can significantly improve the robustness and
adaptability of autonomous robots. Furthermore, it illustrates the effective combination of artificial
intelligence (AI) and machine learning with stochastic methods to handle the complexities of
dynamic environments. These contributions add depth to the existing literature on autonomous
navigation and probabilistic decision-making, providing a solid framework for future research.

7.3 Future scope
The future scope of this research is broad, with numerous potential avenues for further

exploration.
i. Advanced AI integration: Future studies could explore the integration of more advanced

machine learning techniques, such as deep reinforcement learning, to improve the
adaptability of autonomous systems in even more complex environments.

ii. Multi-agent systems: Expanding this research to multi-agent systems, where multiple
AVs or robots interact, could provide valuable insights into the collective behavior of
autonomous systems operating in crowded spaces.

iii. Real-world testing: Applying these stochastic models to real-world autonomous vehicle
trials in diverse environments—ranging from urban centers to rural areas.

iv. Hybrid models: Combining stochastic models with deterministic methods or rule-based
approaches could yield hybrid systems that balance computational efficiency.

7.4 Limitations
Despite the promising results, the research has several limitations.

i. Simulation-based analysis: The case study relies on simulated environments, which may
not fully capture the complexity and unpredictability of real-world conditions. This limits
the generalizability of the results to actual autonomous systems.

ii. Computational overhead: The stochastic models, particularly Monte Carlo methods and
Kalman filters, can be computationally expensive, which might pose challenges in real-
time applications or in environments where processing power is limited.

Limited environmental scope: The study focuses primarily on urban traffic conditions. Further
research is needed to examine how these models perform in more diverse or extreme
environments, such as off-road navigation or adverse weather conditions.

Acknowledgments
This research was not funded by any grant.

Conflict of Interest
There is no conflict of interest to disclose.

References
[1] Lestingi, L., Zerla, D., Bersani, M. M., & Rossi, M. (2023). Specification, stochastic modeling and analysis of

interactive service robotic applications. Robotics and Autonomous Systems, 163, 104387.
https://doi.org/10.1016/j.robot.2023.104387

https://doi.org/10.1016/j.robot.2023.104387

Spectrum of Operational Research

Volume 3, Issue 1 (2026) 215-237

236

[2] Araujo, H., Mousavi, M. R., & Varshosaz, M. (2023). Testing, validation, and verification of robotic and autonomous
systems: A systematic review. ACM Transactions on Software Engineering and Methodology, 32(2), 1–61.
https://doi.org/10.1145/3542945

[3] Bao, H., Kang, Q., Shi, X., Zhou, M., Li, H., An, J., & Sedraoui, K. (2023). Moment-based model predictive control of
autonomous systems. IEEE Transactions on Intelligent Vehicles, 8(4), 2939–2953.
https://doi.org/10.1109/TIV.2023.3238023

[4] Vesentini, F., Di Persio, L., & Muradore, R. (2023). A Brownian–Markov stochastic model for cart-like wheeled
mobile robots. European Journal of Control, 70, 100771. https://doi.org/10.1016/j.ejcon.2022.100771

[5] Knaup, J., Okamoto, K., & Tsiotras, P. (2023). Safe high-performance autonomous off-road driving using covariance
steering stochastic model predictive control. IEEE Transactions on Control Systems Technology.
https://doi.org/10.1109/TCST.2023.3291570

[6] Tatari, F., & Modares, H. (2023). Deterministic and stochastic fixed-time stability of discrete-time autonomous
systems. IEEE/CAA Journal of Automatica Sinica, 10(4), 945–956. https://doi.org/10.1109/JAS.2023.123405

[7] Vincent, J. A., Feldman, A. O., & Schwager, M. (2024). Guarantees on robot system performance using stochastic
simulation rollouts. IEEE Transactions on Robotics. https://doi.org/10.1109/TRO.2024.3444070

[8] Hsu, K. C., Hu, H., & Fisac, J. F. (2023). The safety filter: A unified view of safety-critical control in autonomous
systems. Annual Review of Control, Robotics, and Autonomous Systems, 7. https://doi.org/10.1146/annurev-
control-071723-102940

[9] Landgraf, D., Völz, A., Berkel, F., Schmidt, K., Specker, T., & Graichen, K. (2023). Probabilistic prediction methods
for nonlinear systems with application to stochastic model predictive control. Annual Review of Control, 56,
100905. https://doi.org/10.1016/j.arcontrol.2023.100905

[10] Bensaci, C., Zennir, Y., Pomorski, D., Innal, F., & Lundteigen, M. A. (2023). Collision hazard modeling and analysis in
a multi-mobile robots system transportation task with STPA and SPN. Reliability Engineering & System Safety, 234,
109138. https://doi.org/10.1016/j.ress.2023.109138

[11] Brüdigam, T., Olbrich, M., Wollherr, D., & Leibold, M. (2021). Stochastic model predictive control with a safety
guarantee for automated driving. IEEE Transactions on Intelligent Vehicles, 8(1), 22–36.
https://doi.org/10.1109/TIV.2021.3074645

[12] Duan, X., & Bullo, F. (2021). Markov chain–based stochastic strategies for robotic surveillance. Annual Review of
Control, Robotics, and Autonomous Systems, 4(1), 243–264. https://doi.org/10.1146/annurev-control-071520-
120123

[13] Chen, J., & Shi, Y. (2021). Stochastic model predictive control framework for resilient cyber-physical systems:
Review and perspectives. Philosophical Transactions of the Royal Society A: Mathematical, Physical and
Engineering Sciences, 379(2207), 20200371. https://doi.org/10.1098/rsta.2020.0371

[14] Neghab, H. K., Jamshidi, M., & Neghab, H. K. (2022). Digital twin of a magnetic medical microrobot with stochastic
model predictive controller boosted by machine learning in cyber-physical healthcare systems. Information, 13(7),
321. https://doi.org/10.3390/info13070321

[15] Zare, A., Georgiou, T. T., & Jovanović, M. R. (2020). Stochastic dynamical modeling of turbulent flows. Annual
Review of Control, Robotics, and Autonomous Systems, 3(1), 195–219. https://doi.org/10.1146/annurev-control-
053018-023843

[16] Nakka, Y. K., & Chung, S. J. (2022). Trajectory optimization of chance-constrained nonlinear stochastic systems for
motion planning under uncertainty. IEEE Transactions on Robotics, 39(1), 203–222.
https://doi.org/10.1109/TRO.2022.3197072

[17] Cardoso, R. C., Kourtis, G., Dennis, L. A., Dixon, C., Farrell, M., Fisher, M., & Webster, M. (2021). A review of
verification and validation for space autonomous systems. Current Robotics Reports, 2(3), 273–283.
https://doi.org/10.1007/s43154-021-00058-1

[18] Mwaffo, V., DeLellis, P., & Humbert, J. S. (2021). Formation control of stochastic multivehicle systems. IEEE
Transactions on Control Systems Technology, 29(6), 2505–2516. https://doi.org/10.1109/TCST.2020.3047422

[19] Goswami, S. S., Behera, D. K., Afzal, A., Kaladgi, A. R., Khan, S. A., Rajendran, P., Subbiah, R., & Asif, M. (2021).
Analysis of a robot selection problem using two newly developed hybrid MCDM models of TOPSIS-ARAS and
COPRAS-ARAS. Symmetry, 13(8), 1331. https://doi.org/10.3390/sym13081331

[20] Goswami, S. S., & Behera, D. K. (2021). Solving material handling equipment selection problems in an industry with
the help of entropy integrated COPRAS and ARAS MCDM techniques. Process Integration and Optimization for
Sustainability, 5(4), 947–973. https://doi.org/10.1007/s41660-021-00192-5

[21] Goswami, S. S., & Behera, D. K. (2023). Developing fuzzy-AHP-integrated hybrid MCDM system of COPRAS-ARAS
for solving an industrial robot selection problem. International Journal of Decision Support System Technology,
15(1), 1–38. http://doi.org/10.4018/IJDSST.324599

https://doi.org/10.1145/3542945
https://doi.org/10.1109/TIV.2023.3238023
https://doi.org/10.1016/j.ejcon.2022.100771
https://doi.org/10.1109/TCST.2023.3291570
https://doi.org/10.1109/JAS.2023.123405
https://doi.org/10.1109/TRO.2024.3444070
https://doi.org/10.1146/annurev-control-071723-102940
https://doi.org/10.1146/annurev-control-071723-102940
https://doi.org/10.1016/j.arcontrol.2023.100905
https://doi.org/10.1016/j.ress.2023.109138
https://doi.org/10.1109/TIV.2021.3074645
https://doi.org/10.1146/annurev-control-071520-120123
https://doi.org/10.1146/annurev-control-071520-120123
https://doi.org/10.1098/rsta.2020.0371
https://doi.org/10.3390/info13070321
https://doi.org/10.1146/annurev-control-053018-023843
https://doi.org/10.1146/annurev-control-053018-023843
https://doi.org/10.1109/TRO.2022.3197072
https://doi.org/10.1007/s43154-021-00058-1
https://doi.org/10.1109/TCST.2020.3047422
https://doi.org/10.3390/sym13081331
https://doi.org/10.1007/s41660-021-00192-5
http://doi.org/10.4018/IJDSST.324599

Spectrum of Operational Research

Volume 3, Issue 1 (2026) 215-237

237

[22] Mondal, S., & Goswami, S. S. (2024). Machine learning applications in automotive engineering: Enhancing vehicle
safety and performance. Journal of Process Management and New Technologies, 12(1–2), 61–71.
https://doi.org/10.5937/jpmnt12-50607

[23] Jiang, B., Karimi, H. R., Yang, S., Gao, C., & Kao, Y. (2020). Observer-based adaptive sliding mode control for
nonlinear stochastic Markov jump systems via T–S fuzzy modeling: Applications to robot arm model. IEEE
Transactions on Industrial Electronics, 68(1), 466–477. https://doi.org/10.1109/TIE.2020.2965501

[24] Mattila, R., Rojas, C. R., Krishnamurthy, V., & Wahlberg, B. (2020). Inverse filtering for hidden Markov models with
applications to counter-adversarial autonomous systems. IEEE Transactions on Signal Processing, 68, 4987–5002.
https://doi.org/10.1109/TSP.2020.3019177

[25] Zhang, Q., & Zhou, Y. (2022). Recent advances in non-Gaussian stochastic systems control theory and its
applications. International Journal of Network Dynamics and Intelligence, 111–119.
https://doi.org/10.53941/ijndi0101010

[26] Liu, L., Feng, S., Feng, Y., Zhu, X., & Liu, H. X. (2022). Learning-based stochastic driving model for autonomous
vehicle testing. Transportation Research Record, 2676(1), 54–64. https://doi.org/10.1177/03611981211035756

[27] Stojanovic, V., He, S., & Zhang, B. (2020). State and parameter joint estimation of linear stochastic systems in
presence of faults and non‐Gaussian noises. International Journal of Robust and Nonlinear Control, 30(16), 6683–
6700. https://doi.org/10.1002/rnc.5131

[28] Umlauft, J., & Hirche, S. (2020). Learning stochastically stable Gaussian process state–space models. IFAC Journal
of Systems and Control, 12, 100079. https://doi.org/10.1016/j.ifacsc.2020.100079

[29] Wang, A., Jasour, A., & Williams, B. C. (2020). Non-gaussian chance-constrained trajectory planning for
autonomous vehicles under agent uncertainty. IEEE Robotics and Automation Letters, 5(4), 6041–6048.
https://doi.org/10.1109/LRA.2020.3010755

[30] Kurniawati, H. (2022). Partially observable Markov decision processes and robotics. Annual Review of Control,
Robotics, and Autonomous Systems, 5(1), 253–277. https://doi.org/10.1146/annurev-control-042920-092451

[31] Lavaei, A., Soudjani, S., Abate, A., & Zamani, M. (2022). Automated verification and synthesis of stochastic hybrid
systems: A survey. Automatica, 146, 110617. https://doi.org/10.1016/j.automatica.2022.110617

[32] Wang, Y., & Chapman, M. P. (2022). Risk-averse autonomous systems: A brief history and recent developments
from the perspective of optimal control. Artificial Intelligence, 311, 103743.
https://doi.org/10.1016/j.artint.2022.103743

[33] Karpas, E., & Magazzeni, D. (2020). Automated planning for robotics. Annual Review of Control, Robotics, and
Autonomous Systems, 3(1), 417–439. https://doi.org/10.1146/annurev-control-082619-100135

[34] Shaheen, K., Hanif, M. A., Hasan, O., & Shafique, M. (2022). Continual learning for real-world autonomous
systems: Algorithms, challenges and frameworks. Journal of Intelligent and Robotic Systems, 105(1), 9.
https://doi.org/10.1007/s10846-022-01603-6

[35] Poveda, J. I., Benosman, M., Teel, A. R., & Sanfelice, R. G. (2021). Robust coordinated hybrid source seeking with
obstacle avoidance in multivehicle autonomous systems. IEEE Transactions on Automatic Control, 67(2), 706–721.
https://doi.org/10.1109/TAC.2021.3056365

[36] Shi, Y., & Zhang, K. (2021). Advanced model predictive control framework for autonomous intelligent mechatronic
systems: A tutorial overview and perspectives. Annual Review of Control, 52, 170–196.
https://doi.org/10.1016/j.arcontrol.2021.10.008

[37] Berberich, J., & Allgöwer, P. (2024). An overview of systems-theoretic guarantees in data-driven model predictive
control. Annual Review of Control, Robotics, and Autonomous Systems, 8. https://doi.org/10.1146/annurev-
control-030323-024328

[38] Mitchell, D., Blanche, J., Zaki, O., Roe, J., Kong, L., Harper, S., Robu, V., Lim, T., & Flynn, D. (2021). Symbiotic system
of systems design for safe and resilient autonomous robotics in offshore wind farms. IEEE Access, 9, 141421–
141452. https://doi.org/10.1109/ACCESS.2021.3117727

[39] Zhang, X., Li, Y., Ran, Y., & Zhang, G. (2020). Stochastic models for performance analysis of multistate flexible
manufacturing cells. Journal of Manufacturing Systems, 55, 94–108. https://doi.org/10.1016/j.jmsy.2020.02.013

[40] Lauri, M., Hsu, D., & Pajarinen, J. (2022). Partially observable Markov decision processes in robotics: A survey. IEEE
Transactions on Robotics, 39(1), 21–40. https://doi.org/10.1109/TRO.2022.3200138

[41] Chen, Y., Georgiou, T. T., & Pavon, M. (2021). Optimal transport in systems and control. Annual Review of Control,
Robotics, and Autonomous Systems, 4(1), 89–113. https://doi.org/10.1146/annurev-control-070220-100858

https://doi.org/10.5937/jpmnt12-50607
https://doi.org/10.1109/TIE.2020.2965501
https://doi.org/10.1109/TSP.2020.3019177
https://doi.org/10.53941/ijndi0101010
https://doi.org/10.1177/03611981211035756
https://doi.org/10.1002/rnc.5131
https://doi.org/10.1016/j.ifacsc.2020.100079
https://doi.org/10.1109/LRA.2020.3010755
https://doi.org/10.1146/annurev-control-042920-092451
https://doi.org/10.1016/j.automatica.2022.110617
https://doi.org/10.1016/j.artint.2022.103743
https://doi.org/10.1146/annurev-control-082619-100135
https://doi.org/10.1007/s10846-022-01603-6
https://doi.org/10.1109/TAC.2021.3056365
https://doi.org/10.1016/j.arcontrol.2021.10.008
https://doi.org/10.1146/annurev-control-030323-024328
https://doi.org/10.1146/annurev-control-030323-024328
https://doi.org/10.1109/ACCESS.2021.3117727
https://doi.org/10.1016/j.jmsy.2020.02.013
https://doi.org/10.1109/TRO.2022.3200138
https://doi.org/10.1146/annurev-control-070220-100858

