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This paper presents various aspects of the capacitated transportation 
problem by incorporating into the classical transportation problem some 
realistic constraints such as limited capacities, restrictions on total flow, time-
sensitive delivery of goods, and linear, quadratic, and fractional objectives. It 
delves into cost minimization, time minimization, and the trade-off between 
these two aspects. A special class of non-linear programming problems such 
as the fixed-charge bi-criterion transportation problem with an indefinite 
quadratic objective function with restriction on total flow is examined. The 
fractional problem, along with paradoxical scenarios where it is possible to 
ship more total goods for less total cost, is also presented. Each model is 
supported with mathematical formulations, some of which are illustrated 
through real-life applications such as the military transportation problem of 
the Indian Army. 
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1. Introduction 

Classical transportation problem is a class of linear programming problems where a homogenous 
commodity available at different warehouses is to be shipped to various markets and depots at 
minimum transportation cost/time. Pioneer work was done by Hitchcock [1] and Koopman [2] on 
these problems. Hitchcock formulated the transportation problem, and later on, Koopman construct 
a computationally more efficient solution approach that follows the steps of the simplex method. 
The most organized and effective technique for solving linear programming problems was simplex 
method. This technique was proposed by George Dantzig [3] in 1947.  A necessary and sufficient 
condition for the existence of feasible solution of a transportation problem is that total demand is 
always equal to total supply. But in real world situations, there is a limited capacity of resources such 
as vehicles, docks, equipment etc. This gives rise to a capacitated transportation problem with 
bounds on rim conditions. Dahiya et al., [4] studied a class of capacitated transportation problem 
with bounds on rim conditions where only variable costs are taken in to account. Later, Adlakha et 
al., [5] studied a more realistic scenario of transportation problem in which both fixed and variable 
cost component is studied.  Gupta [6] and Gupta and Arora [7,8] worked extensively on various 
aspects of bounded transportation problems but their work is centred on the methodology of 
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classical optimization. In real life, the objective function is not always linear. Rather, the objective 
function is a product of two linear functions. Another class of non-linear programming problem is 
fractional programming problems where the objective function is the ratio of two linear functions. 
Optimization of a ratio of criteria often describes some kind of an efficiency measure for a system. 
Gupta and Arora [9] developed an algorithm to find optimum cost time trade off pairs in a fractional 
capacitated transportation problem with restricted flow. Dahiya and Verma [4] presented a note on 
two stage interval time minimization transportation problem. Some researchers such as Basu et al., 
[10] and Bhatia et al., [11] gave equal importance to both cost and time minimization. This dual 
objective give rise to optimum cost-time trade-off pairs in transportation problem. This paper is an 
attempt to summarize various aspects of capacitated transportation problem which finds its 
applications in real life. Many researchers have presented different techniques to solve capacitated 
transportation problems.  Xie and Li [12] presented an iterative solution technique to minimize the 
average transportation cost of bounded transportation problem with bounds on rim conditions. 
Barma et al., [13] presented a genetic algorithm for the profit-maximizing capacitated vehicle routing 
problem under certain paradigm. This is further supported by the research of Jiang and Zhang [14] 
which demonstrates an improved adaptive differential evolution algorithm for the uncapacitated 
facility location problem. Pinacho-Davidson and Blum [15] presented a hybrid evolutionary algorithm 
for minimum bounded dominating set problem. An extension of this idea can be found in the work 
of Kulac and Kazancı [16] who used iterative optimization technique to optimize in-factory vehicle 
routing using swarm intelligence in plant logistics. However, Kaur et al., [17] offers a different 
viewpoint, suggesting an efficient algorithm for two-stage capacitated transportation problem based 
on classical optimization approach. Kumar and Dhanapal [18] used the technique of fermatean fuzzy 
numbers to solve the multi-objective bi-item capacitated transportation problem.  This paper is an 
attempt to summarize various aspects of capacitated transportation problem which finds its 
applications in real life.  
 
2. Defining Transportation problem  
2.1 Classical Transportation Problem 

A transportation problem may be described as follows: Let there be m sources with ia ;

1,2,3,....i m= units of supply of a particular commodity and n destinations having jb ; 1,2,3,....j n= units 

of demand respectively. It is assumed that , 0i ja b  . Let ijc be the unit cost of transportation from 

source th
i source to th

j  destination. Since there is only one commodity, a destination can receive the 

demand from one or more sources. The problem is to determine the feasible shipping pattern from 
sources to destinations that minimizes the total transportation cost. The basic assumption here is 
that the transportation cost of a given route is directly proportional to the number of units 
transported. The definition of “unit of transportation” will vary depending on the commodity 
transported. Let ijx be the number of units transported from source i to destination j. Assuming that 

the total supply equals the total demand, that is 
1 1

m n

i j

i j

a b
= =

=  , the mathematical formulation of the 

standard transportation problem is: 

(P1): min ij ij

i I j J

z c x
 

= subject to 

;ij i

j J

x a i I


=   
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;ij j

i I

x b j J


=   

0; ,ijx i I j J    

where {1, 2,3... }I m= and {1, 2,3... }J n= . However, in real life, it is not necessarily true that the total 

supply equals the total demand. In such situations, source and / or destinations constraints are 
inequations as opposed to the usual equations. Such unbalanced transportation problems can be 
studied by developing equivalent standard transportation problems.  
 

2.2 Bounded Transportation Problem 
The standard transportation problem, known as “Hitchcock – Koopmans Transportation 

Problem” is mathematically given by (P1). The total flow in the problem is
1 1

m n

i j

i j

a b
= =

=  . But in real 

world situations, there is a limited capacity of resources such as vehicles, docks, equipment etc. This 
gives rise to a capacitated transportation problem with bounds on rim conditions. A capacitated 
transportation problem is a distribution model with upper and lower bounds on the number of units 
shipped from an origin to a destination. This problem differs from the classical distribution model in 
which the node shipping amounts are, by contrast, specified exactly. This generalization of the 
classical distribution problem not only makes the model versatile from the theoretical stand point 
but also makes the model more usable from an application view point. In many applications of the 
distribution model, the firm is only interested in shipping exact number of units from each origin and 
in receiving an exact number of units at each destination 

min ij ij

i I j J

z c x
 

=  (1)  

subject to  

;i ij i

j J

a x A i I


    (2) 

;j ij j

i I

b x B j J


    (3) 

; ,ij ij ijl x u i I j J    and integers.  (4)                      

where  I = {1, 2, … m} is the index set of m origins. J = {1, 2, …, n} is the index set of n destinations.

ijx denotes the number of units to be transported from ith origin to jth  destination. ijc is the cost of 

transporting one unit of commodity from ith origin to jth destination. lij and uij are the bounds on 
number of units to be transported from ith origin to jth destination.   ai and Ai are the bounds on the 
availability at the ith origin, i I   bj and Bj are the bounds on the demand at the jth destination, .j J   

 
3. Aspects of Bounded Transportation Problem 
 3.1 Fixed Charge Capacitated Transportation Problem 

Capacitated transportation problem finds its application in a variety of real-world problems like 
telecommunication networks, production – distribution system, rail and urban road system. But 
many distribution problems in practice can only be modelled as fixed charge transportation 
problems. For example – rails, roads and trucks have invariably freight rates which consists of fixed 
costs and variable costs both. The transportation cost in many distribution problems consists of fixed 
costs, which are independent of the amount transported and the variable costs, which are 
proportional to the amount shipped. For example – rail, road and truck companies invariably use 
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freight rates that comprise both fixed costs such as permit fees and property taxes and variable costs, 
such as direct equipment and personnel usage. Capacitated fixed charge transportation problem 
finds its application in warehouse location problem, in fleet routing, in scheduling problem etc. 
Capacitated transportation problem is solved by upper bounded simplex technique. The inclusion of 
upper bound in the transportation table requires modification in the feasibility condition of the 
simplex method because a basic variable can become a non-basic variable at its upper bound or lower 
bound. Moreover, when a non-basic variable becomes a basic variable, its value should not exceed 
its upper bound and should not be less than its lower bound. In addition to this, its value should not 
disturb the non-negativity and upper bound conditions of all existing basic variables. Mathematically, 

a fixed charge capacitated transportation problem is represented by min ij ij i

i I j J i I

c x F
  

 
+ 

 
 
  subject 

to the constraints (2), (3) and (4). Here, Fi represents the fixed cost associated with ith origin. For the 

formulation of ;iF i I , we assume that ;iF i I has p number of steps so  that
1

;

p

i il il

l

F F i I
=

=   where 

1;

1,2,3... ; .

0;

ij il

j J
il

x a

l p i I

otherwise

 

 
 

=  =  
 
 


 1 20 .....i i ipa a a=    ; 1 2, ,..., ;i i ipa a a i I are constants and ilF  are 

the fixed costs for all ; 1, 2,... .i I l p =  

 
3.2 Bottleneck Capacitated Transportation Problem 

A special class of transportation problem called bottleneck transportation problem is considered 
where the objective is to minimize the maximum time of transporting all supply to the destinations 
under certain conditions. In a bottleneck transportation problem, the time of transporting items from 
origins to destinations is minimized, satisfying certain conditions in respect of availabilities at sources 
and requirements at the destinations. Time minimization is more important than cost minimization 
in certain situations such as when military units are to be sent from their bases to certain fronts 
within the shortest possible time. Another situation concerns the transportation of perishable goods. 
From practical point of view, the problem consists of supplying certain consumers with the necessary 
quantity of items (goods, military equipment, aircraft and so on) in such a way that the total time 
from the starting of the operation until its completion should be minimal. This section studies the 
objective function of time minimization in a capacitated transportation problem when decision 
variables are bounded. A technique for minimizing time in a capacitated transportation problem with 
bounds on rim conditions is developed. The procedure involves finite iterations and is based on 
movement from one extreme point to another extreme point  until an optimal solution is reached.  
The technique is based on certain assumptions such as the carriers have sufficient capacity to carry 
goods from an origin to a destination in a single trip. Moreover, they start simultaneously from their 
respective origins. The mathematical model of the problem is: min max{ / 0}ij ijT t x=  subject to the 

constraints (2), (3) and (4). Here, ijt  is the time of transporting goods from ith origin to the jth 

destination. For any given feasible solution, ijX x=  satisfying (2), (3)and (4), the time of 

transportation is the maximum of tij
,s among the cells in which there are positive allocations i.e. 

corresponding to the solution X, the time of transportation is ( ) 
( , )

max | 0ij ij
i j

t x  . This problem can be 

used to solve the real-life military transportation problem of Indian Army discussed in next section. 
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3.3 Military Transportation Problem of Indian Army 
Army Headquarters at Pathankot supply military units with arms, ammunitions, food etc. to 

various locations at J and K border from its two regiments (i) Dogra and Sikh. Indian Army used to 
supply the military units to three crucial locations (j) –Kargil, Poonch and Rajouri of J.K border. Let xij 
be the quantity of military units with arms, ammunitions, food etc. sent from the ith regiment to the 
jth location. Let tij be the time of transporting the military units from the ith regiment to the jth location. 
Then the goal is to determine the transportation schedule which minimizes the maximum time of 
transporting the military units with arms, ammunitions and food etc., during emergency situations. 
The problem can be formulated as follows: 

min z = 
( , )

max{ | 0}ij ij
i j

t x   

subject to 

5≤ 
3

1

1

30,j

j

x
=

   
3

2

1

10 40j

j

x
=

  , 
2

1

1

10 30,i

i

x
=

   
2

2

1

5 20i

i

x
=

  , 
2

3

1

5 30i

i

x
=

   

11 12 131 10;2 10;0 5x x x       

21 22 230 15;1 10;1 20x x x       

11 12 13 21 22 2315; 8; 2; 16; 14; 11t t t t t t= = = = = =  

On applying the algorithm for solving the bounded transportation problem described by Gupta 
and Arora [7], the decision maker will get the minimum time of transporting goods is 15 and the 
amount in pipeline is 6 units. 

 
3.4 Cost-time Trade-off in a Bounded Transportation Problem 

The fixed charge transportation problem can be stated as a distribution problem in which there 
are m suppliers (warehouses or factories) and n customers (destinations or demand points). Each of 
the m supplies can ship to any of the n customers at a shipping cost per unit 

ijc  (unit cost for shipping 

from supplier i to customer j) plus a fixed cost Fi. Sometimes, the total capacity of each route is also 
specified by some external decision maker because of budget or other political consideration. This 
gives rise to capacitated time minimizing transportation problems. Moreover, sometimes a fixed cost 
(like set up cost for machines, landing fees at an airport, cost of renting a vehicle) is also associated 
with every origin due to which fixed charge must also be taken in to account along with variable cost 
of transporting goods from various origins to different destinations. Normally, bi – criterion problem 
arises when the user has to compromise between two criteria. In emergency situations such as fire 
services, ambulance services, police services etc., when the time of transportation is more important 
than cost of transportation. If the total flow in a transportation problem with bounds on rim 
conditions is also specified, the resulting problem makes the transportation problem more realistic. 
Moreover, if the total capacity of each route is also specified then optimal solution of such problems 
is of greater importance which gives rise to capacitated transportation problems. From the practical 
point of view, the cost minimizing transportation problem and the time minimizing transportation 
problem cannot be viewed as two independent problems. The mathematical model of the problem 
in which the two objectives of minimizing cost and time are unified is given below.  

( )
,

min , max | 0ij ij i ij ij
i I j J

i I j J i I

c x F t x
 

  

  
+  

  
   subject to (2), (3) and (4). These types of problems have 

practical importance in real life.  
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3.5 Indefinite Quadratic Capacitated Transportation Problem with Restricted Flow 
In linear programming, the values of decision variables are to be determined so as to optimize 

the value of the linear objective function subject to linear constraints. However, when either 
objective function or constraints or both are not expressed in terms of linear relationships among 
decision variables, we take the help of non -linear programming methods to solve such non-linear 
programming problems. A special class of transportation problems called indefinite quadratic 
transportation problem consist of the objective function as the product of two linear functions. One 
of the linear- function represents the total variable cost of transporting goods from various supply 
points to various demand points. Another linear function represents the total damage cost or 
depreciation cost which is incurred while transporting goods. Practically, a fixed cost called set up 
cost is also incurred when a commodity is transported. The objective function discussed in this 
section considers fixed charge also. In addition to cost, a time is also associated with each shipping 
route. A business man must be interested in minimizing the maximum time of transporting all supply 
to the destinations. From the practical point of view, the cost minimizing transportation problem and 
the time minimizing transportation problem cannot be viewed as two independent problems. This 
gives rise to efficient time cost trade off pairs which minimizes cost and time simultaneously in a 
capacitated fixed charge bi–criterion indefinite quadratic transportation problem. The mathematical 
model of such a problem as: 

( )
,

min , max | 0ij ij ij ij i ij ij
i I j J

i I j J i I j J i I

c x d x F t x
 

    

    
+      

    
   subject to (2),(3) and (4).  

In any transportation problem, the total quantity supplied by the various supply points and 
consequently received by the various destinations is the total flow in the system. This flow is different 
for different combinations of supply points and destination constraints. Sometimes, situations arise 
where either reserve stocks have to be kept at the supply points say, for emergencies or there is a 
shortfall in the production level. In such situations, the total flow needs to be curtailed. This gives rise 

to a new restricted flow constraint given by  ij

i I j J

x P
 

= in the transportation problem where

min , .i j

i I j J

P a b
 

 
  

 
 
  This gives rise to a capacitated fixed charge bi – criterion indefinite quadratic 

transportation problem with restriction on total flow. This type of problems can be used in solving 
the problems of industry as discussed by Gupta and Arora [7,8]. 

 
3.6 Fractional Transportation Problem  

There is a wide scope of fractional transportation problem [19-21] in practice such as stock cutting 
problem, resource allocation problems, routing problems for ships and planes, cargo loading 
problem, inventory problem and many others. The standard transportation problem aims at 
minimizing the total cost of transporting a uniform product from various supply points to various 
destinations. But the objective function of profit maximization is not considered so far. We now 
consider an objective function which minimizes the total variable cost of transporting goods from 
various sources to different destinations and simultaneously maximizes the total variable profit 
earned when goods are transported. In addition to this, the objective function maximizes the rate of 
return on a fixed capital investment. The mathematical model of such a problem is given by  

min

ij ij i
i I j J i I

ij ij i

i I j J i I

c x F

d x G

  

  

 
 

+ 
 
 

 

 
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subject to (2), (3), (4) and (5). 
 

3.7 Paradox in a Bounded Transportation Problem 
A paradoxical situation arises when value of the objective function falls below the optimal value 

and this lower value is attainable by transporting larger amount of quantity. The source of the so- 
called transportation paradox is unclear. Apparently, many researchers have discovered 
independently from each other the following behavior of the transportation problem. In certain cases 
of the transportation problem, an increase in the supplies and demand may lead to a decrease in the 
optimal transportation cost. In other words, by moving bigger amount of goods around, one may 
save a lot of money. This surely sounds paradoxical. The more for less paradox in a transportation 
problem occurs when it is possible to ship more total goods for less (or equal) total cost, while 
shipping the same amount or more from each origin to each destination and keeping all shipping 
costs non negative. The information of occurrence of a paradoxical situation is useful to a manager 
in deciding which warehouse or plant capacities are to be increased and which market should be 
sought. It could also be a useful tool in analyzing and planning company acquisitions, mergers, 
consolidations and downsizes. If a paradox exists, one would obviously be interested in the best 
paradoxical pair. 

 
4. Model Comparison 

The classical and capacitated transportation problems prioritize minimizing transportation costs. 
These models are more suitable for logistics problems where costs are the primary concern. The 
bottleneck and time-minimization models prioritize rapid delivery, vital in emergency services or 
perishable goods supply chains. The fixed charge, cost-time trade-off, indefinite quadratic, and 
fractional transportation models incorporate multiple objectives, adding complexity but offering 
more realistic solutions where multiple factors (cost, time, profit) influence decision-making. 
Quadratic and fractional models address non-linear relationships like depreciation costs and profit-
to-cost ratios, which are critical while studying resource allocation and industrial planning. Each 
model has its strengths and limitations, depending on the specific constraints and objectives of the 
transportation scenario being addressed. These models offer varying levels of complexity and 
practical utility. 

 
5. Conclusion 

This paper provides a comprehensive overview of the capacitated transportation problem  
including linear and non-linear objectives. It highlights the importance of integrating constraints such 
as rim conditions, restricted flow, and specified flow in transportation planning. The mathematical 
formulations of these problems and their applications in real-world scenarios, such as 
telecommunication networks, warehouse management, and emergency logistics to warehousing, 
were discussed.  Techniques for finding optimal cost-time trade-off pairs were also examined, 
particularly in cases where minimizing transportation time is critical, such as in military operations 
and perishable goods transportation. Overall, this paper provides a comprehensive summary of the 
capacitated transportation problem, with an emphasis on its practical applications in logistics and 
resource management. Despite the extensive analysis presented, there are certain limitations. First, 
the mathematical models developed in this paper are based on simplifying assumptions, such as 
simultaneous dispatch of carriers and sufficient carrier capacity. These assumptions might not always 
hold in real-world transportation systems. Moreover, the study does not account for dynamic or 
stochastic variables, such as uncertain demand or transportation delays, which could significantly 
affect the outcome of transportation planning. As future work is intended, we can extend the models 
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to accommodate multi-modal transportation systems or integrating them with modern technologies 
such as blockchain or Artificial intelligence for real-time optimization. This could further improve the 
practical applicability of these methods in diverse sectors. 
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