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In light of accelerating urbanization and the intensifying challenges of climate
change, ensuring sustainability and resilience in urban environments has become
a strategic imperative. This study introduces an innovative methodology that
combines Multi-Criteria Decision Making (MCDM) with g-rung orthopair fuzzy
Yager aggregation operators (q-ROFYAOs) to address the multifaceted complex-
ities of sustainable urban development. The paper proposes novel Yager op-
erations grounded in Yager t-norms within the framework of g-rung orthopair
fuzzy sets (q-ROFSs). Utilizing these foundations, two advanced aggregation op-
erators are formulated: the g-Rung Orthopair Fuzzy Generalized Power Priori-
tized Yager Weighted Average Operator (q-ROFGPOPRYWA) and the g-Rung Or-
thopair Fuzzy Generalized Power Prioritized Yager Weighted Geometric Operator
(g-ROFGPOPRYWG). These operators satisfy essential mathematical properties,
including idempotency, monotonicity, and boundedness, ensuring consistency
and reliability in decision-making contexts. To demonstrate the practical rele-
vance of the proposed approach, the operators are embedded within an MCDM
framework and applied to a real-world case study on sustainable urban planning.
The analysis encompasses sensitivity testing, comparative evaluations, and per-
formance assessments, offering comprehensive insights into the robustness of
the method. Finally, the paper provides a critical evaluation of the advantages
and limitations of the proposed operators, underscoring their effectiveness in
promoting urban resilience and minimizing environmental impact within complex
decision-making environments.
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1. Introduction

Addressing contemporary urban challenges requires innovative and adaptive strategies. Advance-
ments in intelligent technologies play a pivotal role in promoting sustainable urban development by
enhancing resource efficiency, optimizing infrastructure, and strengthening urban resilience. This in-
terdisciplinary approach supports smarter city planning and data-driven decision-making, enabling
cities to respond dynamically to environmental and social pressures. Integrating such technologies
into urban systems is essential for fostering innovation, resilience, and long-term sustainability. For
the full forms of abbreviations used throughout this paper, please refer to the table provided in the
Appendix.

1.1 Motivation for the Proposed Research

Urban planning is currently undergoing a significant transformation driven by the integration of ad-
vanced technologies. These innovations have the potential to reshape and redefine the urban planning
landscape. However, numerous questions remain regarding their broader impacts on both theoret-
ical research and practical implementation in urban and regional contexts, including the challenges
they pose and the strategies required to address them effectively [1]. As cities strive to enhance sus-
tainability, there is an increasing need for innovative, technology-enabled solutions. Allam et al. [2]
emphasize the importance of critically engaging with new technologies and advocate for their thought-
ful integration into the societal framework. To this end, careful calibration and contextual adaptation
are essential for building cities that are not only intelligent but also genuinely sustainable and re-
silient. Advancements in urban systems can support resource optimization, improve infrastructure
performance, and drive innovation. Achieving sustainable urban development ultimately requires a
comprehensive approach that balances environmental, economic, and social dimensions.

The Multi-Criteria Decision-Making (MCDM) method stands as a potent approach in decision-making,
providing a thorough assessment of multiple criteria, addressing subjectivity, ensuring transparency,
and accommodating both quantitative and qualitative data [3-6]. MCDM represents a contemporary
approach aimed at identifying the most favorable alternative that maximizes profit in accordance with
attribute values. The theory and methodologies of MCDM find application in making significant de-
cisions across various domains, including personnel selection, industrialization, waste management,
site selection, urban innovation, and more. The MCDM procedure involves three crucial steps. Firstly,
information about alternatives is gathered based on diverse attributes. Subsequently, the collected
information is aggregated to determine the overall decision value for the target. The final step involves
selecting the best option after ranking the alternatives in order of preference [7].

g-rung orthopair fuzzy set (g-ROFS) is an extension of orthopair fuzzy sets that offers greater granu-
larity for representing uncertainty and preferences. This enhanced expressiveness makes g-ROFS es-
pecially valuable in fields such as urban planning, environmental management, and decision-making
under uncertainty. Building on prior research in sustainable energy planning [8], our study employs
g-ROFS and Yager operators to support sustainable urban innovation and resilience by effectively ad-
dressing uncertainties in urban decision-making.

1.2 Literature Review

Traditional approaches in formal computing often produce precise, binary outcomes—typically
expressed as a definitive yes or no. However, this binary logic fails to capture the subtleties inher-
ent in many real-world scenarios. To overcome this limitation, Zadeh introduced the Fuzzy Set (FS)
theory in 1965 [9], which allows elements to possess membership grades within the unit interval [0,
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1]. Despite this advancement, FSs rely solely on membership values (MV), which can be insufficient
for complex decision-making contexts. Recognizing the need for richer information, Atanassov [10]
introduced Intuitionistic Fuzzy Sets (IFSs), which incorporate both membership and non-membership
values (NMV). IFS theory has since been widely adopted in multiple criteria decision-making (MCDM).
For example, Seikh and Mandal [11] introduced Dombi aggregation operators (AOs) for integrating job
data in an intuitionistic fuzzy environment, while Senapati et al. [12] proposed Aczel-Alsina operators
for sustainable transportation practices. Other researchers, such as Gohain et al. [13], applied sym-
metric distance measures for pattern recognition and clustering, and Ke et al. [14] devised a ranking
method for site selection in photovoltaic poverty alleviation projects. Wan and Yi [15] extended this
work with power average operators for trapezoidal IFSs using strict t-norms and t-conorms. A key lim-
itation of IFSs is that the sum of MV and NMV must not exceed 1, which restricts their applicability in
more complex uncertainty modeling. To address this, Yager [16] introduced Pythagorean Fuzzy Sets
(PyFS), where the sum of the squares of MV and NMV is restricted to 1. PyFS has proven effective
for addressing complex MCDM problems [17, 18]. Building on this, Yager later introduced the g-rung
orthopair fuzzy set (g-ROFS) [19], where the g-th powers of MV and NMV must sum to < 1, allowing
even greater flexibility in handling uncertainty.

Numerous applications of g-ROFSs have emerged: Wang et al. [20] proposed a q-ROF MABAC
model for MADM problems; Seikh and Mandal [7] developed g-ROF Frank AOs; Wang et al. [21, 22]
introduced Muirhead mean and Hamy mean operators for decision fusion and ERP systems, respec-
tively; and Kausar et al. [23] adapted the CODAS method for g-ROFSs in cancer risk assessment. Aggre-
gation operators are essential for simplifying complex datasets, offering functions like sum, average,
and count to extract meaningful insights. They are especially valuable in high-dimensional decision
environments where interpretability and precision are critical. In our study, we explore the role of ar-
tificial intelligence in urban planning and propose a new class of g-rung orthopair fuzzy Yager aggrega-
tion operators (gq-ROFYAQ). We thoroughly examine their mathematical properties and demonstrate
their ability to model uncertainty and nonlinear relationships with high precision. These operators,
grounded in Yager's t-norm, are particularly effective for capturing complex interdependencies, mak-
ing them well-suited to applications in control systems, optimization, and decision-making processes.
To validate our approach, we apply the g-ROFYAO within MCDM framework aimed at promoting sus-
tainable urban innovation and resilience.

1.3 Research Gap

Before presenting the main contributions of this study, it is important to highlight the research
gaps that motivated our work. These include the limited exploration of ExpoLogarithmic t-norms and
t-conorms within the g-rung orthopair fuzzy set (q-ROFS) framework, and the lack of a solid theoretical
foundation for Yager aggregation tools. Moreover, the absence of specialized aggregation operators
for g-ROFSs and the insufficient validation of such operators in practical MCDM applications further
underscore the need for this research. Addressing these gaps forms the core of our study’s contribu-
tions.

1.4 Research Questions

To guide this study, the following research questions are proposed:

(i). What are the key properties and contributions of Yager t-norms and t-conorms in the context of
fuzzy set theory?

(ii). How do Yager aggregation tools operate within the g-rung orthopair fuzzy set (q-ROFS) frame-
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work, and how do they support smooth and effective aggregation?

(iii). Inwhat ways do the proposed operators—q-Rung Orthopair Fuzzy Generalized Power Prioritized
Yager Weighted Average (q-ROFGPOPRYWA) and Weighted Geometric (q-ROFGPOPRYWG) Op-
erators—differ from traditional methods, and what are their essential properties with illustrative
examples?

(iv). How can the proposed operators be validated through a real-world MCDM problem focused on
sustainable urban innovation and resilience using artificial intelligence?

1.5 Issues with Earlier Works

The proposed study is motivated by several gaps in the existing literature, including:

(i). Limited exploration and application of Yager t-norms and t-conorms in fuzzy set theory.
(iii). Inadequate analysis of Yager aggregation operations within the q-ROFS context.

(iii). Lack of specialized aggregation operators such as g-ROFGPOPRYWA and q-ROFGPOPRYWG in
existing research.

(iv). Limited empirical validation of proposed fuzzy operators in real-world MCDM applications, es-
pecially within the context of sustainable urban development.

1.6 Main Contributions of the Study

To address the identified research gaps, this study makes the following key contributions:

(). Introduction of Yager t-norms and t-conorms: The study introduces the Yager t norms and t
norms and explores their mathematical properties.

(ii). Formulation of Fundamental Operations: It details the core operations of Yager aggregation
tools within the fuzzy set of orthopair g-rung (q-ROFS) framework, offering a foundation for
smooth and effective aggregation.

(iii). Development of Novel Aggregation Operators: Two new operators are proposed: g-Rung or-
thopair fuzzy generalized power prioritized yager weighted average (q-ROFGPOPRYWA) and
weighted geometric (Q-ROFGPOPRYWG)—with an analysis of their properties and illustrative
examples.

(iv). Validation via Real-World Application: The practical utility of the proposed operators is demon-
strated through a real-world MCDM case study centered on sustainable urban development.

1.7 Organization of the Proposed Study

The structure of this study is organized as follows: Section 2 presents the fundamental concepts
that form the theoretical foundation of the research. Section 3 introduces Yager's operations on g-
rung orthopair fuzzy numbers, highlighting their formulation and significance. Section 4 proposes the
d-Rung Orthopair Fuzzy Generalized Power Prioritized Yager Weighted Aggregation Operators and ex-
amines their mathematical properties in detail. Section 5 outlines the Multi-Criteria Decision-Making
(MCDM) methodology, accompanied by a sensitivity analysis and a discussion of the advantages and
limitations of the proposed operators. Section 6 concludes the study by summarizing the key find-
ings and implications. Finally, Section 7 provides an appendix with a tabular list of abbreviations used
throughout the paper.
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2. Methodology

2.1 Background and Fundamentals

This section outlines the foundational concepts in fuzzy set theory, forming the basis for the anal-
yses presented in the later sections. Definitions 2.1, 2.2, 2.3, and 2.4 introduce key constructs, includ-
ing fuzzy sets (FS), intuitionistic fuzzy sets (IFS), Pythagorean fuzzy sets (PyFS), and g-rung orthopair
fuzzy sets (q-ROFS). Example 2.1 illustrates the practical relevance of g-rung orthopair fuzzy numbers
(g-ROFNs) through a real-world scenario. The section also explores Yager’s t-norm and t-conorm, fol-
lowed by discussions on Yager'’s Power Average (PA) and Prioritized Average (PRA) operators, which
are integral to the aggregation techniques developed later in the study. Unless otherwise specified,
let X denote a non-empty universal set throughout this paper. Definition 2.5 introduces the score
function for q-ROFNs, while Definition 2.6 explains how to compare these score values. Overall, this
section establishes both the theoretical underpinnings and the practical context for applying q-ROFS
theory, providing a solid foundation for the advanced methods and applications discussed in subse-
qguent sections. Here, we define a Fuzzy Set F over X as follows:

Definition 2.1. [9] The concept of a fuzzy set (FS) is defined as follows:

F=A{(z,a(x)):x € X}

Here, o(x) is the membership grade of an element x € X, while o(z) is restricted to values within the
interval [0, 1.

Clearing the path for the examination of uncertainty, Atanassov [10] introduced the concept of
intuitionistic fuzzy set (IFS) as an innovative framework designed to capture the nuanced aspects in-
herent in decision-making processes.

Definition 2.2. [10] The concept of an intuitionistic fuzzy set (IFS) is defined as follows:

F=A{(z,a(x),pf(x)) :x € X}

Here, o(z), 5(x) are the membership and non-membership grades of an element © € X, respectively.
Both «(x) and (3(z) are constrained to values within the interval [0, 1], and o(z) + f(x) < 1.

Ronald R. Yager, as outlined in his publication [16], introduced the Pythagorean fuzzy set (PyFS)
framework, offering a novel approach to encapsulate uncertainty within the domain X'. The distinctive
representation is formulated as follows:

Definition 2.3. [16] The concept of a Pythagorean fuzzy set (PyFS) is defined as follows:

F={(z,a(x),f(x)) :x € X}

Here, a(x), 5(x) are the membership and non-membership grades of an element x € X, respectively.
Both a(z) and (3(x) are constrained to values within the interval [0, 1], and a(x)* + 8(z)? < 1.

In his pioneering research [19], Ronald R.Yager introduced the revolutionary concept of g-rung
orthopair fuzzy set (q-ROFS) F over X, offering a unique characterization that extends beyond the
traditional fuzzy set framework.
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Definition 2.4. [19] The concept of a g-rung orthopair fuzzy set (q-ROFS) is defined as follows:

F={(z,a(x),pf(x)) :x € X}

Here, a(x) and [3(x) represent the membership and non-membership grades of an element © € X,
respectively. Both «(z) and [(x) are constrained to values within the interval [0, 1], and a(x)? +
B(x)? < 1 (g > 1). Furthermore, a g-rung orthopair fuzzy number (q-ROFN) is symbolized as F =
(c, B) or F; = (au, Bt) for convenience (where t is a positive integer).

Liu et al. [24] proposed a score function for any g-ROFN, represented as F = («, (3), defined by
S(F) = o — 9. The resulting value of S(F) may initially fall within the interval [—1, 1]. To enhance
computational convenience and ensure that S(F) resides within the more practical interval [0, 1], we
have made a slight modification to Liu et al. [24]'s score function for g-ROFN as follows.

Definition 2.5. The score function for any q-rung orthopair fuzzy number (q-ROFN), F = («, 8), is
defined as follows:
S(F) =1/2+ (1/2)(a = p9) (1)

Liu et al. [24] revolutionize fuzzy set theory by presenting a novel perspective that sheds light on
intricate relationships within g-rung orthopair fuzzy sets.

Definition 2.6. [25] For any two q-ROFNs, F; = (ay, B1) and Fy = («w, [32), the relationship between
the score values of F, and JF, can be expressed as:

’fS(Fl) < S(Fz) then.7:1 < Fs
’fS(Fl) > S(Fz) then}"l > fz
’fS(.Fl) = S(.Fl) then -Fl = .FQ

Drawing inspiration from Yager’s pioneering contributions in fuzzy set theory [19], this definition
introduces Yager’s t-norm (YTN) and t-conorm (YTCN), thereby making a significant contribution to the
fundamental principles of fuzzy logic.

Definition 2.7. [19] For any two z,y € [0,1], and ;n € (0,00), Yager’s t-norm (YTN) and Yager'’s t-
conorm (YTCN) are defined as follows.

YTN(z,y) = min{1, (z* + y*)"/*}

YTCN(z,y) = 1 — min{1, (1 — 2)* + (1 — y)*)/*}

Definition 2.8. [26] Consider a collection of criteria F; fori = 1,2,...,m. The Power Average (PA)
Operator is defined as:
PA(f17f27"'7fm>:®?;1niE7 (2)
where the Power coefficients n; are computed as:
1+ U,

N =<<m 77 57w
Zk:l(l + uk)

and U; :Z%&l [1—|Fi — Fl]fori=1,2,...,m.
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Definition 2.9. [27] Consider a collection of criteria F; fori = 1,2,...,m. The Prioritized Average
(PRA) Operator is defined as:

PRA(F17~F2a"'7~Fm) = 69;11777»;;’

where the Prioritized coefficients n; are computed as:

S
Z ZZL:1 Vi’

withV =landV, =30 S(F) (i =2,...,m).

3. Yager’s Operations on g-Rung orthopair Fuzzy Numbers

In this section, we introduce Yager’s operations, which include F; & Fs, F; ® Fa, 0F1, and }"f
(6 > 0), applied specifically to g-rung orthopair fuzzy numbers. These operations leverage Yager’s
t-norm and t-conorm, as discussed in Definition 2.7.

To illustrate the practical application of these Yager’s operations on g-rung orthopair fuzzy num-
bers, we examine a real-life scenario: the sustainable urban development for Green Infrastructure
Project within urban areas. Additionally, we discuss the essential properties of these operations, al-
though formal proofs are not provided.

Definition 3.1. [16] The operations & and ® by Yager between two q-ROFNs, 1 = (o, 1) and Fy =
(v, Ba), with p, § > 0, are defined as follows:

FooFo = ([1—minf1, ((1-af)*+ (1= a1, fmin (1, (80 + (897} 7")

Fi@Fo = ([minfL, ()" + (a§))}]"" [1 — min{1, (1 = 81 + (1 - 83)'9] ")
67 = ([1 - min{1, (51 = afy) "}, [min{1, (5(87)) /1) (3)

Fi = ([mm{1, (6(ah))#1]MT [1 — min{1, (5(1 — B9)*)/#] 1/q)

To illustrate the operations by Yager on g-rung orthopair fuzzy numbers, represented as F; &
Fo, F1 @ Fo, 0F1, and F?, as defined in Definition 3.1, we delve into the practical application of
the sustainable urban development for Green Infrastructure Project within urban areas as outlined in
Example 3.2.

Example 3.2. In the evaluation of sustainable urban development initiatives, such as “Green Infrastruc-
ture Project Y”, professionals focus on specific criteria to ensure environmental resilience and commu-
nity well-being. This project aims to integrate green spaces and sustainable infrastructure into urban
areas, thereby enhancing quality of life and mitigating environmental risks.The evaluation of “Green
Infrastructure Project Y ”includes the following criteria:

(i). Green Space Accessibility (Criteria 1): Access to green spaces plays a crucial role in promoting
urban residents well-being and environmental sustainability [28]. By ensuring easy access to
parks, gardens, and recreational areas, cities can enhance physical and mental health while
fostering a deeper connection with nature.
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(ii). Stormwater Management (Criteria 2): Effective management of stormwater is vital for reduc-
ing flood risks and preserving water quality in urban areas [29, 30]. Implementing sustainable
drainage systems and green roofs can help mitigate the impact of heavy rainfall events, con-
tributing to overall resilience against climate change.

To quantify these criteria comprehensively, intelligent systems technology and g-rung orthopair fuzzy
numbers are employed.

For Green Space Accessibility (Criteria 1), represented by F; = (0.7,0.6), a membership grade of
0.7 indicates high accessibility to green spaces, while a non-membership grade of 0.6 denotes lower
accessibility.

Similarly, for Stormwater Management (Criteria 2), represented by F» = (0.8, 0.7), a membership
grade of 0.8 indicates effective stormwater management practices, while a non-membership grade of
0.7 suggests areas for improvement.

By applying Yager'’s operations on q-rung orthopair fuzzy numbers (such as & and & ), urban plan-
ners can integrate these criteria to assess the overall effectiveness of “Green Infrastructure Project
Y”in promoting sustainable urban development and resilience. While this example simplifies the eval-
uation to two criteria, real-world assessments of sustainable urban projects would consider a broader
range of factors, including biodiversity conservation, energy efficiency, and social equity, to ensure
comprehensive and effective urban planning and development strategies.

To assess the effectiveness of sustainability Regimen Y, Yager’s operations are utilized on g-rung
orthopair fuzzy numbers (q = 4), represented as F, @& F» and F; ® JF», with the parameter 1. fixed at
2 according to Definition 3.1. The process for computing F, & J» is delineated in Equation (4).

F1& Fe = (a,p) (4)

Here, o is calculated using the provided data and Equation (3.1):

a = [1 — min (17 (1—a)"+(1— ag)“)l/“)} 1/q

a [1 — min (17 (=07 + (1 - 0.84)2)1/2)} 1/4

— [1 — min (1,0.0.962299)]"/*
= 0.4406431

Similarly, the value of 3 in Equation (4) is determined using Equation (3.1) along with the provided
data. The resulting Yager’s operation, denoted as F, & F, is expressed as:
F1 @ Fo = (0.4406431,0.7227346)
Likewise, the computation of J; ® F» yields:
F1 ® Fo = (0.8300879, 0)

Applying the score function defined in Equation (1), we obtain the effectiveness scores: S(F; & F») =
0.3824280 and S(F; ® F5) = 0.5791307. Thus, the effectiveness of sustainability Regimen Y, as
determined by Yager’s operations on g-rung orthopair Fuzzy Numbers (¢ = 4), is 0.3824280 for F, & JF>
and 0.5791307 for F; ® F,. The values of the remaining Yager’s operations, 6, and F?, can be
similarly determined for a fixed value of §. Figure 1 enhances the visualization of sustainable urban
development for the Green Infrastructure Project as discussed in Example 3.2.
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Green Space Accessibility of Stormmwater Managemert
(Criteria 1) e {Criteria )

Effective
Stormowater
Management

Fig. 1. Visual representation of the sustainable urban development for the Green Infrastructure
Project, as illustrated in Example 3.2.

Taking into account the fundamental characteristics of Yager’s operations & and ®, along with
scalar multiplication and scalar power, as delineated in Theorem 3.1, we can observe their essential
properties.

Theorem 3.1. [16] Let F; and JF; represent two q-ROFNs, F; = («y, 1) and Fy = (aq, fBs). For any
01,02 > 0, the following holds.

(i). L Fo=Fa @ Fu.

(ii). Fi @ Fp=Fo @ Fi.
(iii). 01(F1 @ Fo) = 61.F1 @ 6,.Fo.
(iv). (6, 4 02)F) = 6,.F) @ 0oF.
(V). (Fi®Fp)’ = F' @ Fat.
(vi). F' @ FP = Foroe,

Proof. The proof is easily shown by applying Definition 3.1. O

4. Innovative g-Rung Orthopair Fuzzy Generalized Power Prioritized
Yager Weighted Aggregation Operator and Its Distinctive Features

This section presents two novel approaches, g-ROFGPOPRYWA and g-ROFGPOPRYWG, specifically
designed for integrating g-Rung Orthopair Fuzzy Numbers (q-RLDFNs). To illustrate their practical util-
ity, we showcase real-world instances related to the Sustainable Transportation Plan within urban
development. We delve into fundamental characteristics such as idempotency, boundedness, and
monotonicity.
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4.1 Exploring the Aggregation Operator: q-Rung Orthopair Fuzzy Generalized Power
Prioritized Yager Weighted Average

In this section, we introduce the concept of AO, which we denote as g-ROFGPOPRYWA. We demon-
strate that when aggregating m g-ROFNs, they retain their g-ROFN nature under the influence of AO,
specifically g-ROFGPOPRYWA. We illustrate the practical application of AO, g-ROFGPOPRYWA, in ur-
ban development, particularly within the context of the Sustainable Transportation Plan (see Example
4.4). Avisual representation of this application is provided. Furthermore, we thoroughly examine and
provide simplified proofs for key properties of AO, g-ROFGPOPRYWA, such as I[dempotency, Bounded-
ness, and Monotonicity.

Definition 4.1 outlines AO, known as q-ROFGPOPRYWA, which involves integrating g-ROFNs, de-
noted as F;, using generalized power prioritization weighting coefficients 7,. These coefficients are
determined by calculating power weighting coefficient factors, denoted as U/;, and prioritized weight-
ing coefficient factors, represented as V;, using specified equations. These equations incorporate pa-
rameters a and b within the range of [0, 1].

Definition 4.1. Let F; = («y, 3;) fori = 1,2,...,m represent q-Rung Orthopair Fuzzy numbers (g-
ROFNs). Consider a weight vector 20 = [toy, 109, ..., 1,,] associated with the q-ROFNs F;, where
to; > 0 and Z:’;l tv; = 1. The g-Rung Orthopair Fuzzy Generalized Power Prioritized Yager Weighted
Average (q-ROFGPOPRYWA) aggregation operator is then defined as:

q—ROFGPOPRYWA(}], Fo, ... ,]:m) =@ niF, (5)
The Generalized Power Prioritization weighting coefficients 7; are computed as:

o to; [a(l + Z/{Z) + bVl]
1 Eznzl 1oy [a(l + Z/{k> + ka] ’

(6)

The calculation of the power weighting coefficient factors, denoted as U;, involves the following
process:

U= ) [1—D(F,Fi)l.

NE

k=1
ki
The determination of the prioritized weighting coefficient factors, represented as U;, entails the fol-

lowing procedure:
V=1, (7)

1—1
Vi=][SF), i=2,....m (8)
k=1

In this context, a and b belong to the interval [0, 1] and serve as adjustable parameters according to
specific needs. The power weighting coefficients, represented as U;, the prioritized weighting coeffi-
cients, denoted as V;, and the Generalized Power Prioritization weighting coefficients, referred to as
1;, remain constant throughout the entire article unless explicitly stated otherwise.

Substituting « = 1 and b = 0 into Equation (6)results in the transformed equation, referred to as
Equation (5). This transformed equation adopts the structure of the g-Rung Orthopair Fuzzy Power
Yager Weighted Average (q-ROFPOYWA) Aggregation Operator, as specified in Definition 4.2.
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Definition 4.2. Let F; = («ay, 3;) fori = 1,2, ..., m represent g-Rung Orthopair Fuzzy numbers (g-
ROFNs). Consider a weight vector 20 = [toy, 109, ..., 1,,] associated with the q-ROFNs F;, where
to; > 0and Zﬁl to; = 1. The g-Rung Orthopair Fuzzy Power Yager Weighted Average (q-ROFPOYWA)
Aggregation Operator is then defined as:

q-ROFPOYWA(F, Fo, . .. ,fm) =@, vk,
The Power weighting coefficients ~; are computed as:

' Z?:l mk(1+uk>7
Substituting « = 0 and b = 1 into Equation (6) results in the transformed equation, referred to as

Equation (5). This transformed equation adopts the structure of the g-Rung Orthopair Fuzzy prioritized
Yager Weighted Average (q-ROFPOYWA) AQ, as specified in Definition 4.3.

Definition 4.3. Let F; = (o, 3;) fori = 1,2,..., m represent g-Rung Orthopair Fuzzy Numbers (q-
ROFNs). Consider a weight vector 20 = [toq, tos, . . ., W0,,] associated with the g-ROFNs F;, where vo; >
0 and 2111 to; = 1. The g-Rung Orthopair Fuzzy Prioritized Yager Weighted Average (q-ROFPRYWA)
AO is then defined as:

G-ROFPRYWA(Fy, Fa, ..., Fp) = @ 0 Fi,

The Prioritized weighting coefficients 1); are computed as:
D et W0V

The following Theorem 4.1 establishes the aggregated value of g-ROFNs as F; = (o, 5;) fori =
1,2,...,m, through the utilization of the g-Rung Orthopair Fuzzy Generalized Power Prioritized Yager
Weighted Average (Q-ROFGPOPRYWA) operator (Equation (5)).

Vi

Theorem 4.1. The combined value of q-Rung Orthopair Fuzzy Numbers (q-ROFNs), denoted as F; =
(o, B;) fori = 1,2,...,m, using the g-Rung Orthopair Fuzzy Generalized Power Prioritized Yager
Weighted Average (q-ROFGPOPRYWA) operator, also results in a g-ROFN. The aggregation process is
outlined as follows:

q-ROFGPOPRYWA(Fy, Fo, ..., Fm) = O™ 0 F;

1/q

m 1/q m
[1 — min{1, (Z mi(1 — ag)“)l/“}] : lmin{l, (Z m(ﬁ?)“)””}] (9)

Proof. Mathematical induction offers a dependable approach to confirming the validity of a proof.

Case 1. Let us suppose m equals 2, and denote 1, F; as (aq, B_l), and 1, F» as (da, 6_2). In accordance
with Equation (3.1), we can then express the following relationship:

q-ROFGPOPRYWA(Fy, Fy) = @2 Fi
. _ _ 1 . _ _ 1
([1 = mindL, (1 = @) + (1= @) )] " [mind (1, (B + (577 o)
It is evident that for each i = 1, 2, based on Equation (3), the following relations hold.

1/q
T, = |1 —min{1, (n:(1 — TH)M)my forall T =a
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Case 2.

T = {min{l, (m(zg)ﬂ)l/u}} o forall T=7
Substituting these expressions into Equation 10, we obtain the modified form of Equation 10.
d-ROFGPOPRYWA(Fy, F2) = @7 niFi
2 1/q 2 1/q
[1 —min{1, () (1 - a?)“)”“}] : [min{l, 5 m(ﬁ?)“)”“}]
i=1 i=1
If the result holds for m = p, we can establish its validity for m = p + 1. Let us assume that

ob_ i Fi = (aa, Ba) and 7,11 F 41 = (Gpi1, Bpe1)- Then, in accordance with Equation (3.1),
we obtain:

CI'ROFGPOPRYWA(JT"l, FQ, ce. ,.Fp, ]:p-i-l) = @leﬁz./—'; S5 77p+1fp+1

([ = ming1, (1= %)+ (1= a3 7 fin{ (1, ((4)" + (F)) 1)

It is evident that from the assumption, we have the following.

P 1/q
Ta = [1 — min{1, (Z n:(1— 7?)“)1/“}] forall 7T =«
i=1

P 1/q
Ta = [min{1. (S u(T ] fora 75

i=1

Again, from Equation (3), we have the following.
_ 1/q
Tpt1 = [1 — min{1, (7,4+1(1 — pil)“)l/“}] forall T =«
_ 1/q
T = [min{L. (a0 | forall 7=

If we substitute these values into Equation 2, then Equation 2 becomes as follows.

G-ROFGPOPRYWA(Fy, Fo, . . ., Fpi1) = &V 0 F;

p+1 1/a p+1 1/q
[1 — min{1, (Z ni(1 — ag)u)l/u}] , [min{l, (Z ni(ﬁg)u)l/u}

Therefore, the result remains valid for all values of m.

]

Example 4.4. The Sustainable Transportation Plan(STP) [31] plays a crucial role in urban develop-
ment, exerting significant influence on environmental sustainability and public welfare. Serving as a
comprehensive guide, it ensures that transportation initiatives are executed effectively, aiming to mit-
igate environmental impact while improving overall urban livability. As urban planners evaluate this
plan, their focus centers on specific criteria pertaining to sustainable transportation and its impact on
the community.
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(i) Emission Reduction (Criteria 1)[32]: A key objective of the STP is to minimize emissions from
transportation activities, thereby improving air quality and mitigating climate change effects. By
optimizing transportation protocols, urban planners aim to reduce vehicle emissions, positively
impacting environmental and public health outcomes. Furthermore, a significant reduction in
emissions not only enhances local air quality but also contributes to global efforts to combat
climate change, reinforcing the overall sustainability of urban transportation systems.

(i) Mode Share Shift (Criteria 2)[33]:Promoting a shift towards sustainable modes of transporta-
tion, such as walking, cycling, and public transit, is essential for reducing traffic congestion and
dependence on fossil fuels. Evaluating the effectiveness of the STP in encouraging mode share
shifts is crucial for optimizing urban mobility and reducing greenhouse gas emissions. Further-
more, a higher mode share for sustainable transportation options enhances community well-
being by providing equitable access to affordable and environmentally friendly transportation
alternatives.

(iii) Accessibility and Equity (Criteria 3)[34]: Assessing the accessibility of transportation services
and ensuring equity in transportation planning is fundamental for promoting social inclusion
and enhancing urban mobility for all residents. This criterion evaluates the STP’s effectiveness in
providing equitable access to transportation options, particularly for marginalized communities
and underserved areas. Improving accessibility and equity in transportation not only enhances
quality of life but also fosters economic development and social cohesion within urban areas.

To demonstrate the application of an assessment framework, attention is focused on three critical
criteria: Emission Reduction, Mode Share Shift, and Accessibility and Equity. However, it’s important
to note that evaluating the sustainable transportation plan should extend beyond these criteria. Uti-
lizing advanced methodologies and leveraging data analytics specifically tailored for urban planning,
these criteria can be quantified to ensure a comprehensive assessment of the plan’s effectiveness in
promoting sustainable urban transportation.

For Criteria 1, Emission Reduction, represented by F; = (0.7, 0.3), the membership grade 0.7 signifies
a high likelihood of achieving significant emission reductions, while the non-membership grade 0.3
denotes a lower likelihood.

Similarly, for Criteria 2, Mode Share Shift, represented by F, = (0.8, 0.2). A membership grade of
0.8 indicates a moderate-to-high likelihood of shifting mode shares towards sustainable options, while
a non-membership grade of 0.2 suggests a moderate-to-low likelihood.

For Criteria 3, Accessibility and Equity, represented by F5; = (0.9, 0.8), the membership grade
0.9 signifies a high likelihood of improving accessibility and equity in transportation, while the non-
membership grade 0.8 denotes a moderate likelihood.

Assuming weights to; = 0.2, oy = 0.3, and w3 = 0.5 for F;, Fs, and JF3 respectively, these
weights and fuzzy numbers are applied solely for illustrating the application of AO, g-ROFGPOPRYWA
(Equation (9)) in the environment of q-ROFNs. They do not represent real evaluation. To assess the
efficacy of the sustainable transportation plan, the AO, g-ROFGPOPRYWA as defined in Equation (9)
can be employed with the parameters 1 = 3, a = 0.2, and b = 0.8. Initially, calculate the power
weighting coefficient factor denoted as U, defined in (2.8).

U =) [1=D(F, Fi)] = [1 = D(F1, F)l + [1 = D(F, Fs)] (11)

]

X
AN
==
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Here, the computation of D(F;, F») involves utilizing the provided data and applying Equation
1
D(F1, F2) = 5(laq — ab| + |57 = 53)

1
= §(|0.74 —0.8% 4+10.3* —0.2%))
= 0.088000
Similarly, the distance D(F;, F3) is calculated to be 0.4087500. Substituting these values into Equation
(11), we find U; = 1.50325. Likewise, we can determine U, = 1.58475 and Us; = 1.264 using the same

approach. From Equation (7), the prioritized weighting coefficient factor V; = 1. Furthermore, the
prioritized weighting coefficient factors V; for i = 2, 3 can be calculated as defined in Equation (8).

1

Vv, = [[S(F) = S(F) (12)
k=1
2
Vs = [ S(Fr) = S(F)S(F) (13)
k=1
In this context, the calculation of S(JF) involves utilizing the provided data and applying Equation (1):
1, g
S(F1) = 2 + 5(041 - B1)
11 4 4
=3 + 2(0.7 0.3%)
= 0.616

In a similar manner, we can compute S(F>) = 0.7040000. Substituting these values into Equation
(12) and Equation (13), we obtain V, = 0.616 and V53 = (0.616)(0.7040000) = 0.433664. Now, let us
calculate the Generalized Power Prioritization weighting coefficient 1), using Equation (14) as follows.

o 101 [a(l —|—Ll1) + bVl]
S e [a(l 4+ Uy) + V]

Here, 1o [a(1 4+ U;) + bV;] = (0.2)[(0.2)(1 + 1.50325) + (0.8)(1)] = 0.2601300. Similarly, we can
compute g [a(1 + Us) + bVo] = 0.3029250 and tos [a(1 + Us) + bVs] = 0.3998656. Substitute these
values into Equation (14), we get n; = 0.2701469. Similarly, we can calculate n, = 0.3145898 and
n3 = 0.4152633. Now, we can aggregate JF1, F», and F3 by utilizing AO, g-ROFGPOPRYWA (Equation
(9)) as follows.

(14)

T

G-ROFGPOPRYWA(Fy, Fo, F3) = &2 i Fi = (o, B) (15)

Here, the value of « is determined using the provided data and Equation (9):

1

o= [1 — min {1, (m (1 — )" +m2(1 — )" +n3(1 — ag)ﬂ)i}} '

W=
=

= [1 — min (1, ((0.2701469) (1 — 0.7%)% + (0.3145898) (1 — 0.8%)* + (0.4152633)(1 — 0.9%)*)
= 0.8026375

)l

Similarly, the value for (3 in Equation (15) is determined through the utilization of Equation (9) along
with the given data. The resulting AO, g-ROFGPOPRYWA (Equation (15)), is formulated as:

q-ROFGPOPRYWA (Fy, Fy, F3) = (0.8026375,0.7435048)
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Applying the score function expressed in Equation (1) yields the following effectiveness score.
S(q-ROFGPOPRYWA(F,, Fz, F3)) = 0.5547206

Therefore, the assessment of the sustainable transportation plan’s effectiveness, employing AO,
g-ROFGPOPRYWA on q-ROFNs with ¢ = 4, yields a value of 0.5547206. Enhanced visualization for the
evaluation of the Sustainable Transportation Plan is illustrated in Figure 2, as elaborated in Example
4.4.

High Likelihood of Achieving
Emussion Reductions

Lower Likelihood of Achieving
Emission Reduction (Criteria 1) Emission Reductions

Moderate-to-High Likelihood of

Shifting Mode Shares
A 7
Mode Share Shift (Criteria 2)
'a It
Moderate-to-Low Likelihood of

Shifting Mode Shares

Accessibility and Equity (Criteria 3) High Likelihood of Tnproving

Accessibility and Equity

Moderate Likelihood of Inproving
Accessibility and E quity

4

Fig. 2. Visualization depicting the evaluation of the Sustainable Transportation Plan, as discussed in
Example 4.4

The Idempotency Property, as stated in Theorem 4.2, guarantees that employing the AO,
q-ROFGPOPRY W A, on tuples Fi, F», ..., F,, to produce F consistently delivers identical out-
comes. This underscores its reliability in maintaining fundamental structures intact.

Theorem 4.2. (Idempotency Property) For any 1 < i < m, let F; = («, 5;), and suppose F; = F,

where F = («, ). If the aggregation operator g-ROFGPOPRY W A is applied to F, Fa, . .., Fun,

the result is F.

Proof. If F; is equal to F, then Equation (9) can be expressed in a simplified form as:
q-ROFGPOPRYWA(F1, Fa, ..., Fm) = &y F

m m 1/q

1/q
1 — min{1, (Z ni(1 — aq)u)l/u}] , [min{l, (Z 772'(5(1)“)1/“} 5 (16)

i=1 i=1

As a result of the constraint > | 7; = 1, Equation (16) undergoes a transformation to become («, ).
Thus,

a-ROFGPOPRYWA(Fy, Fy, ..., Fp) = F.
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In Theorem 4.3, we establish bounds, denoted as 7~ and F, by considering the minimum and
maximum values of parameters across a set of g-ROFNs. The theorem proves that when the
q-ROFGPOPRYWA function is applied to these q-ROFNs, its output remains within these established
bounds.

Theorem 4.3. (Boundedness Property) Consider q-ROFNs represented by F; = ((«a, 3;)
fort =1,2,...,m. Assume that

F = (m}n{aﬁ,mgxx{ﬁ&) ,
Fr= (mgmx{ai},miin{ﬁi})
We establish the inequality: 7~ < q-ROFGPOPRYWA(Fy, Fs, ..., Fm) < F.
Proof. Based on our assumption, the following inequalities hold for each index: = 1,2,...,m.
miin’ﬁ <T. < mzax’ﬁ for T =«
m;aX'E > T, > mzln’]: for T =p.

Therefore, the ensuing results are as follows:

1/q
min 7; < [1 —min{1, 3", n:(1 — 7?")“)1/“}} <max7; for T =a

1/q
mx T > fmin{1, (52,00 = minTe for 7= 5.

Referring to Equation (9) and the score function outlined in Equation (1), we derive the subsequent
result.

S(F~) < S(q-ROFGPOPRYWA(Fy, Fs, ..., Fm)) < S(FH).

Hence, the proof is finalized in accordance with Definition 2.6. ]

Theorem 4.4 establishes that if one set of g-ROFNs is element-wise less than or equal to another
set, the corresponding order of AO, g-ROFGPOPRYWA values remains unchanged.

Theorem 4.4. (Monotonicity Property) Let F; = (o, 3;) fori = 1,2,...,m, and F, = (a,, 3;) for
1=1,2,...,mrepresent the q-ROFNs. If F; < }"Z/ fori =1,2,...,m,then

q-ROFGPOPRYWA(Fy, Fa, . . ., Fm) < G-ROFGPOPRYWA(F,, Fy, ..., Fo.)-
Proof. If we consider F; < fz fori =1,2,...,m, as specified by Equation (2.5), then we derive:
S(F) < S(F) for i=1,2,....m.

As a result, we obtain the subsequent inequalities:

T, <7, for T=a
T,>7, for T =4

These inequalities can be converted into the following set of inequalities.
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L min{1, (2 L= T e

1/q
[1—min{1,<z?;m<1—< ;>q>“>1/ﬂ}] for T=o

1/q

1/q
min{L (T2 (T2 i, (ST e T
Using Equation (9) and the score function defined in Equation (2.5), we obtain the following outcome.

S(q-ROFGPOPRYWA(Fy, Fs, . .., Fim) < S(q-ROFGPOPRYWA(F,, Fy, ..., F..).

m

Hence, the verification is concluded relying on Definition 2.6. ]

4.2 q-Rung Orthopair Fuzzy Generalized Power Prioritized Yager Weighted Geomet-
ric Aggregation Operator

In this section, we introduce the concept of AO, represented as g-ROFGPOPRYWG. We establish
that when m g-ROFNs are aggregated, the resulting entity remains a g-ROFN under the influence of
AO, specifically g-ROFGPOPRYWG. The practical application of AO, denoted as q-ROFGPOPRYWG, is
demonstrated in the realm of environmental studies, particularly within the framework of the Urban
Agriculture and Food Security Plan (Example 4.8). A visual depiction of this application is presented.
Furthermore, essential properties of AO, g-ROFGPOPRYWG, such as Idempotency, Boundedness, and
Monotonicity, are thoroughly examined and supported by simplified proofs.

Definition 4.5 introduces AO, identified as g-ROFGPOPRYWG, which encompasses the amalgama-
tion of g-ROFNs, labeled as F;, employing Generalized Power Prioritization weighting coefficients de-
noted as 7;. These coefficients are derived by computing power weighting coefficients factors, sym-
bolized as U;, and prioritized weighting coefficients factors, represented as V;, through prescribed
equations. These equations involve parameters a and b confined within the interval of [0, 1].

Definition 4.5. Let F; = (o, 3;) fori = 1,2,..., m represent g-Rung Orthopair Fuzzy Numbers (q-
ROFNs). Consider a weight vector 20 = [toq, 109, ..., 1,,] associated with the q-ROFNs F;, where
to; > 0 and Z;Zl to; = 1. The q-Rung Orthopair Fuzzy Generalized Power Prioritized Yager Weighted
Geometric (q-ROFGPOPRYWG) AQ is then defined as:

G-ROFGPOPRYWG(Fy, Fo, ..., Fm) = Q1 n: Fi, (17)

When substituting a = 1 and b = 0 into Equation (14), we obtain the modified equation, denoted
as Equation (17). This modified equation takes on the format of the g-Rung Orthopair Fuzzy Power
Yager Weighted Geometric (Q-ROFPOYWG) AO, outlined in Definition 4.6.

Definition 4.6. Let F; = («y, 5;) fori = 1,2,...,m represent q-Rung Orthopair Fuzzy Numbers (q-
ROFNs). Consider a weight vector 20 = [toy, 0, . . ., v, ] associated with the g-ROFNs {;, where 1, >
0and > " 1w, = 1. The g-Rung Orthopair Fuzzy Power Yager Weighted Geometric (q-ROFPOYWG)
AO is then defined as:

q-ROFPOYWG(Fy, Fa, ..., Fin) = @7 v Fs,

Substituting ¢ = 0 and b = 1 into Equation (14) results in the transformed equation, referred
to as Equation (17). This transformed equation adopts the structure of the gq-Rung Orthopair Fuzzy
prioritized Yager Weighted Geometric (q-ROFPRYWG) AO, as specified in Definition 4.7.
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Definition 4.7. Let F; = («y;, 3;) fori = 1,2,...,m represent q-Rung Orthopair Fuzzy Numbers (g-
ROFNs). Consider a weight vector v = [toy, 0o, ..., 10,,] associated with the g-ROFNs F;, where
to; > 0and Ziﬂil tww; = 1. The g-Rung Orthopair Fuzzy Prioritized Yager Weighted Geometric (g-
ROFPRYWG) AO is then defined as:

q-ROFPRYWG(F1, {2, ..., Fm) = @7 i F;,

The subsequent Theorem 4.5 establishes the combined value of g-ROFNs as F; = (ay, 3;) for
1=1,2,...,m,employing the g-Rung Orthopair Fuzzy Generalized Power Prioritized Yager Weighted
Geometric (q-ROFGPOPRYWG) operator (Equation (17)).

Theorem 4.5. The combined value of q-Rung Orthopair Fuzzy Numbers (q-ROFNs), denoted as F; =
(v, B;) for i = 1,2,...,m, using the g-Rung Orthopair Fuzzy Generalized Power Prioritized Yager
Weighted Geometric (q-ROFGPOPRYWG) operator, also results in a g-ROFN. The aggregation process
is outlined as follows:

q-ROFGPOPRYWG(Fy, Fa, ..., Fm) = O i Fi

m

m 1/q 1/q
mm{l,@m(az)“)w}] [ ming - mm] ) e

i=1

Proof. This can be demonstrated by employing the same methodologies as those utilized in Theorem
44. O

Example 4.8. (Urban Agriculture and Food Security Plan[35] ) The Urban Agriculture and Food Secu-
rity Plan (UAFSP) is an essential framework for addressing food insecurity and promoting sustainable
urban development. It aims to enhance food accessibility, improve nutritional outcomes, and foster
community resilience through urban agriculture initiatives. Urban planners evaluate this plan based
on specific criteria related to urban agriculture and its impact on food security.

(i). Food Production Capacity (Criteria 1)[36]: A key objective of the UAFSP is to increase local food
production capacity, thereby reducing dependence on external food sources and enhancing food
security within urban areas. By promoting urban agriculture practices such as rooftop gardening,
community gardens, and vertical farming, urban planners aim to boost local food production.
This criterion evaluates the effectiveness of the UAFSP in facilitating increased food production
capacity, which is crucial for ensuring a reliable and sustainable food supply for urban residents.

(ii). Access to Fresh and Nutritious Food (Criteria 2)[37]: Promoting access to fresh, nutritious, and
culturally appropriate food is essential for addressing food insecurity and improving public health
outcomes. The UAFSP aims to enhance food access by supporting farmers’ markets, community-
supported agriculture (CSA) programs, and urban food distribution networks. Evaluating the
effectiveness of the UAFSP in improving access to fresh and nutritious food options is crucial for
enhancing food security and promoting healthy eating habits among urban residents.

(iii). Community Engagement and Participation (Criteria 3)[38]: Assessing community engagement
and participation in urban agriculture initiatives is fundamental for promoting social inclusion
and building community resilience. This criterion evaluates the UAFSP’s effectiveness in foster-
ing community involvement in food production, distribution, and decision-making processes. By
engaging residents in urban agriculture activities such as community gardening and educational
workshops, the UAFSP aims to strengthen social bonds and empower communities to address
food security challenges collectively.
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(iv). Resource Efficiency and Sustainability (Criteria 4)[39]: Assessing the resource efficiency and
sustainability of urban agriculture practices is crucial for ensuring the long-term viability of food
production systems. The UAFSP aims to promote sustainable agricultural techniques such as
rainwater harvesting, composting, and agroecological farming methods. Evaluating the effec-
tiveness of the UAFSP in enhancing resource efficiency and sustainability measures is essential
for minimizing environmental impact and optimizing resource utilization in urban agriculture.
By implementing sustainable practices, such as reducing water and energy consumption, mini-
mizing waste generation, and promoting biodiversity, the UAFSP contributes to the resilience of
urban food systems and mitigates ecological footprints.

For Criteria 1, Food Production Capacity, represented by F; = (0.7,0.3), a membership grade
of 0.7 signifies a moderate-to-high likelihood of increasing food production capacity through urban
agriculture initiatives, while a non-membership grade of 0.3 suggests a moderate-to-low likelihood.
Similarly, for Criteria 2, Access to Fresh and Nutritious Food, represented by F, = (0.9, 0.4), a member-
ship grade of 0.9 indicates a high likelihood of improving access to fresh and nutritious food options,
while a non-membership grade of 0.4 denotes a lower likelihood. For Criteria 3, Community Engage-
ment and Participation, represented by F; = (0.8, 0.1), a membership grade of 0.8 signifies a moder-
ate likelihood of fostering community engagement and participation in urban agriculture initiatives,
while a non-membership grade of 0.1 denotes a moderate likelihood. For Criteria 4, Resource Effi-
ciency and Sustainability, represented by F, = (0.9,0.3), a membership grade of 0.9 signifies a high
likelihood of promoting resource efficiency and sustainability in urban agriculture practices, while a
non-membership grade of 0.3 suggests a moderate likelihood.

Given the weights tv; = 0.1, vy = 0.3, tv3 = 0.2, and v, = 0.4 assigned to F;, F3, F3, and
F, respectively, along with the g-ROFNs, it is important to note that these values are used solely for
illustrative purposes in the context of AO, g-ROFGPOPRYWG (Equation (5)) within the framework of
g-ROFNs (¢ = 3), and do not reflect real evaluation. To evaluate the effectiveness of urban agriculture
and food security plan, we apply AO, g-ROFGPOPRYWG using the parameters 1 = 3, a = 0.7, and
b=0.3.

Firstly, we compute the power weighting coefficient factors, I/; fori = 1,2, 3, 4, as defined in (2.8),
following a similar procedure as in Example 4.4. These values are: U; = 2.498, U, = 2.63, U3 = 2.641,
and Uy = 2.667.

Next, we determine the prioritized weighting coefficient factor V; = 1 using Equation (7). Then, we
compute V; for i = 2, 3, 4 using Equation (8) with the same procedure used in Example 4.4, resulting
in), = 0.658, V3 = 0.547785, and V, = 0.4138516.

With the prioritized weighting coefficients calculated, we proceed to compute the Generalized
Power Prioritization weighting coefficient »; for i = 1,2, 3, 4, using Equation (14) and a similar proce-
dure as in Example 4.4. The resulting values are n; = 0.1012223, n, = 0.30254, n3 = 0.1998252, and
Ny = 0.3964125.

Finally, we aggregate F;, F>, F3, and F; using AO, g-ROFGPOPRYWG (Equation (17)).

q-ROFGPOPRYWG(Fy, Fa, F3, Fi) = @i Fi = (av, ) (19)

In this context, we ascertain the value of « by utilizing the given data and referencing Equation (5).

1/q
o= [min{l, (m ()" + n2(a®)" + nz(af + na(ad))/m}

_ [1 — min (1, ((0.101)(1 — 0.7%)3 + (0.302)(1 — 0.9%) + (0.199)(1 — 0.8%)% + (0.396)(1 — 0.93)3)1/3)}
— 0.8753343
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Similarly, the values of /3 in Equation (19) are determined using Equation (17) and the provided data.
The resulting AO, denoted as g-ROFGPOPRYWG (Equation (19)), can be expressed as follows:

q-ROFGPOPRYWG(Fy, Fy, F3, Fy) = (0.8753343,0.3190233)

By applying the score function presented in Equation (1), the corresponding effectiveness scores
are obtained:

S(q-ROFGPOPRYWG(Fy, Fy, F3, Fu)) = 0.8515795

The effectiveness of urban agriculture and food security plan, utilizing AO g-ROFGPOPRYWG on
g-ROFNs with ¢ = 3, results in a value of 0.8515795. The Assessment Framework for urban agriculture
and food security plan, discussed in Example 4.8, is illustrated in Figure 3.

Moderate-to-high Likelihood of Moderate-to-Low Likelihood of
Increasing Food Production Increasing Food Production
Capacity Capacity

Food Production Capacity
(Criteria 1)

. T . High Likelihood of Improving
High Likelihood of Promoting L
Resource Efficiency and Access to Fresh and Nufritious Food
Sustainability

Resource Efficiency and
Sustainability (Criteria 4)

Access to Fresh and
Nutritious Food (Criteria 2}

Moderate Likelihood of Promoting Low Likelihood of Inproving
Resource Effidency and Access to Fresh and Nutritious Food
Sustainability
Community Engagement

and Participation
(Criteria 3)

High Likelihood of Fostering Moderate Likelihood of Fostering
Community Engagement and Community Engagement and
Pparticipation Pparticipation

Fig. 3. Urban Agriculture and Food Security Plan discussed in Example 4.8

The Idempotency Property (Theorem 4.6) ensures that applying the AO, - ROFGPOPRYW G
to tuples Fi, Fo, ..., F,, equivalent to F yields the same result, highlighting its stability in preserving
underlying structures.

Theorem 4.6. (Idempotency Property) For any 1 < i < m, let F; = («ay, 3;), and suppose F; = F,
where F = (a, ). If the aggregation operator -ROFGPOPRY WG is applied to Fi, Fa, ..., Fu,
the result is F.

Proof. Demonstration of this can be established through employing the same methodologies as those
employed in Theorem 4.2. ]

Theorem 4.7. (Boundedness Property) Consider q-ROFNs represented by F; = («;, 3;)
fort =1,2,...,m. Assume that

F = (miin{ai}7mzax{ﬁi}>
Ft= (miax{ai}, mzln{ﬂz}>

We establish the inequality: F~ < q-ROFGPOPRYWG(F1, Fa, ..., Fm) < FT.
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Proof. Demonstration of this can be established through employing the same methodologies as those
employed in Theorem 4.3. ]

Theorem 4.8 establishes that if one set of g-ROFNs is element-wise less than or equal to another
set, the corresponding AO, g-ROFGPOPRYWG values maintain the same order.

Theorem 4.8. (Monotonicity Property) Let F; = (o, 3;) fori = 1,2,...,m, and F, = (a;, 3;) for
i=1,2,...,mrepresent the g-ROFNs. If F; < F, fori =1,2,...,m, then

q-ROFGPOPRYWG(F, Fa, . . ., Fm) < G-ROFGPOPRYWG(F,, Fy, ..., F..)-

m

Proof. Demonstration of this can be established through employing the same methodologies as those
employed in Theorem 4.4. ]

5. Multi-Criteria Decision Making Methodology and Its Practical Ap-
plication

The Multi-Criteria Decision Making (MCDM) Method comprises several key steps: identifying al-
ternatives and criteria, assigning weights to each criterion, and employing g-Rung Orthopair Fuzzy
Numbers to evaluate criteria against alternatives. The process then involves computing factor coef-
ficients, such as power weighting and prioritized weighting coefficients. These coefficients are amal-
gamated into generalized power prioritized weighting coefficients, which are utilized for aggregating
gd-Rung Orthopair Fuzzy Numbers. Finally, a score value is computed for the aggregated information
to determine the ranking of alternatives based on their performance against the specified criteria.

Step 1. Alternatives and Criteria Identification:

Consider a set of alternatives, .7, %%, . .., <,, and a set of criteria, 71, Fa, ..., Fp..

Step 2. Weight assigned to each criterion for identification:
Let tv; represent the weight assigned to criteria F;, where to, > O for: = 1,2,...,m, and
Step 3. Criterion-Alternative Evaluation using g-Rung Orthopair Fuzzy Numbers:

For each criterion F; (1 = 1,2, ..., m), the evaluation against each alternative
o (7 =1,2,...,n)is conducted utilizing g-Rung Orthopair Fuzzy Numbers. This is represented
as F;j = (v, Bij) fori=1,2,... . mand j =1,2,...,n.

Step 4. Compute the Factor of Power Weighting Coefficients:

The factor of power weighting coefficients U4;; (Equation (2.8)) are computed for every g-Rung

Orthopair Fuzzy number F;;, where: = 1,2,... ,mand j = 1,2,...,n, in the following man-
ner. .
Uiy =Y [1=D(Fij, Fij)] (20)
=

In this context, the distance between F;; and F; is computed using the following calculation.

D(Fij, Frj) = 5 (leij — ol + 1855 — Bjl)

N | —
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Step 5.

Step 6.

Step 7.

Step 8.

Compute the Factor of Prioritized Weighting Coefficients:

The factor of prioritized weighting coefficients V), ; (Equation (7)) and Vij (Equation (8)) are com-
puted for each g-Rung Orthopair Fuzzy number F;;, where: =1,2,... ,mandj =1,2,...,n
in the following manner.

Vi =1, (21)

Vi =[[S8(Fy), i=2...,m. (22)
In this context, the score of F; is computed using the following calculation.

1 1
S(.ij):—+

5 §(aZj - 5133')

Compute the Factor of Generalized Power Prioritized Weighting Coefficients:

Formulate the factor of generalized power prioritized weighting coefficients n;; by incorporating
the criteria weights v, (where i ranges from 1 to m), along with parameters a and b constrained
to the interval [0, 1] for each g-Rung Orthopair Fuzzy number F;;, where i = 1,2,...,m and
J = 2,...,n. This formulation integrates the factor of power weighting coefﬁuents U;j and the

factor of prioritized weighting coefficients V;;.
Flj = 10; [a(l + Z/{ZJ) + bVZ]] (23)

Compute the Generalized Power Prioritized Weighting Coefficients:

The generalized power prioritized weighting coefficients 7;; (Equation (14)) are computed for
each g-Rung Orthopair Fuzzy number {;;, withi = 1,2,...,mand j = 1,2,...,n, utilizing
Equation (23). The calculation is expressed by:

Nij = S (24)
’ Zi:l Fij
Aggregate g-Rung Orthopair Fuzzy Numbers:
Aggregate each grouping of g-Rung Orthopair Fuzzy numbers
Fij, Fajy - Fmj (1 = 1,2, ..., n) using either g-ROFGPOPRYWA (Equation (9)) or
g-ROFGPOPRYWG (Equation (18)).
g-ROFGPOPRYWA(Fy, Fo, ..., Fm) = D niFi
m 1/q m 1/q
[1 —min{1, () ni(1 - a?)ﬂ)”“}] : lmm{l, O m(ﬁf)“)l/“}] (25)
i=1 i=1
(or)
g-ROFGPOPRYWG(Fi, Fo, ..., Fm) = D niFi
1/a m 1/q
[mln{l Zm 1/“}] : [1 —min{1, (Z mi(1— Bf)“)l/“}] , (26)
i=1
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Step 9.

Step 10.

Compute the Score Value:

The score value for the aggregated information in Step Step 8. (Equation (25) or Equation (26))
is computed using Equation (1).

Determine the ranking of alternatives:

The ranking of alternatives .«7; (j = 1,2,...,n) is determined based on the score value com-
puted in Step Step 9..

Example 5.1. (Sustainable Urban Development)

Sustainable urban development remains a cornerstone in addressing the multifaceted challenges
that modern cities face, including climate change, inequality, and infrastructure stress. To advance this
agenda, cities are increasingly adopting a mix of inclusive and tech-enabled solutions. This example
highlights four promising alternatives: Inclusive Urban Governance, Net-Zero Urban Districts, Urban
Agriculture and Vertical Farming, and Digital Twin Urban Planning. The importance of each is discussed
below:

(i).

(ii).

( iii).

Inclusive Urban Governance (<7, ): Inclusive Urban Governance ensures that diverse voices are
represented in planning and decision making, especially those of marginalized communities. It
strengthens democracy, accountability, and social equity in urban development processes.

Key elements of Inclusive Urban Governance include:
(a) Participatory Budgeting: Citizens co-decide how a portion of the municipal budget is spent,
improving transparency and aligning priorities with local needs.

(b) Decentralized Governance Structures: Local councils and neighborhood assemblies enable
more responsive governance and community oversight.

(c) Digital Civic Platforms: Apps and online platforms allow residents to give feedback, track
city services, and engage in urban policy dialogues.

(d) Equity Audits: Policy and project reviews assess and address potential disparities in urban
service delivery and access.

Net-Zero Urban Districts («7,): Net-Zero Urban Districts aim to produce as much energy as they
consume annually through renewable energy, efficiency, and sustainable design. These districts
are models for carbon-neutral urban growth.

Core strategies of Net-Zero Districts include:
(a) District Heating and Cooling Systems: Shared infrastructure reduces emissions and in-
creases energy efficiency across buildings.

(b) High-Performance Building Envelopes: Super-insulated structures minimize heating and
cooling demands.

(c) On-site Renewable Energy: Solar, wind, or geothermal systems meet energy needs at the
district scale.

(d) Net Energy Monitoring Systems: Real-time dashboards enable residents and managers to
track energy use and production.

Urban Agriculture and Vertical Farming (.7;): Urban Agriculture and Vertical Farming address
food security and ecological sustainability by localizing food production within the city. They
reduce food miles, enhance green cover, and create job opportunities.

Significant features include:
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(a) Rooftop and Indoor Farms: Use hydroponics, aeroponics, and LED lighting to produce food
in dense urban areas.

(b) Community Gardens: Shared plots managed by residents foster food sovereignty and so-
cial cohesion.

(c) Edible Landscapes: Public spaces planted with fruit trees and vegetables integrate food
production into daily urban life.

(d) Waste-to-Fertilizer Systems: Composting urban organic waste closes the nutrient loop and
enriches urban soils.

(iv). Digital Twin Urban Planning (.<7;): Digital Twin Urban Planning leverages virtual models of cities
that are continuously updated with real-time data. These twins simulate scenarios, improve
planning accuracy, and enhance city management.

Key attributes include:

(a) Real-Time Monitoring: Sensor networks feed data into models for air quality, traffic, and
energy flows.

(b) Predictive Simulation: Helps anticipate outcomes of zoning changes, infrastructure up-
grades, and climate impacts.

(c) Stakeholder Visualization Tools: 3D interfaces allow planners and residents to interactively
explore future urban scenarios.

(d) Integration with loT and Al: Combines smart infrastructure with data analytics for opti-
mized urban systems.

To address the Multi-Criteria Decision-Making (MCDM) challenge of selecting the most appropri-
ate sustainable urban development alternative among Inclusive Urban Governance, Net-Zero Urban
Districts, Urban Agriculture and Vertical Farming, and Digital Twin Urban Planning, it is essential to
prioritize these options based on key criteria such as Participatory Governance, Carbon and Resource
Efficiency, Urban Resilience and Adaptability, and Systems Innovation and Integration.

Step 1. Alternatives and Criteria Identification:

The alternatives denoted as ¢, 275, @73, and 7, represent Sustainable Urban Development,
specifically Inclusive Urban Governance, Net-Zero Urban Districts, Urban Agriculture and Ver-
tical Farming, and Digital Twin Urban Planning respectively. The criteria F;, Fs, F3, and Fy,
are established as assessment parameters for Sustainable Urban Development, namely, Partic-
ipatory Governance, Carbon and Resource Efficiency, Urban Resilience and Adaptability, and
Systems Innovation and Integration respectively.

Step 2. Weight assigned to each criterion for identification:

Let us assume that tv; = 0.2,105, = 0.3,103 = 0.1, and vy = 0.4, represent the weights
assigned to criteria JF1, F», F3, Fy4, respectively. It is important to note that these weights are
not based on real values but are used for illustrative purposes in the context of the proposed
Multi-Criteria Decision-Making (MCDM) method (refer to Section 5).

Step 3. Criterion-Alternative Evaluation using q-Rung Orthopair Fuzzy Numbers:

Each criterion F; (1 = 1,2,...,4) is assessed against every alternative .<7; (j = 1,2,...,4)
using the g-Rung Orthopair Fuzzy Number (q-ROFN) representation with ¢ = 3, denoted as
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Step 4.

Step 5.

Fij = ((auj, Bij)) fori = 1,2,...,4and j = 1,2,...,4. The tabular representation of g-
ROFN is provided in Table 1. It is essential to emphasize that the values presented in Table 1 are
hypothetical and are utilized for explanatory purposes within the framework of the proposed
Multi-Criteria Decision-Making (MCDM) method (see Section 5).

Table 1
Tabular form of g-ROFNs (q=3)

(F/)  ah Ay Ay )
Fi (0.9,0.4) (0.2,0.6) (0.8,0.1) (0.3,0.5)
F (0.9,0.3) (0.4,0.8) (0.4,0.2) (0.2,0.2)
F3 (0.9,0.5) (0.5,0.9) (07,0.3) (0.3,0.5)
Fu (0.8,0.2) (0.3,0.6) (07,0.4) (0.3,0.4)

Compute the Factor of Power Weighting Coefficients:

The factor of power weighting coefficients, denoted as U{;;, are calculated for each g-ROFN F;;
(Table 1), wherei = 1,2,...,4and j = 1,2, ..., 4. Specifically, we focus on the calculation of
U1, and the remaining coefficients can be determined in a similar fashion. Referring to Equation
20, we obtain:

Ui = [1 —D(Fir, Far)| + [1 = D(Fi1, Fs1)] + [1 — D(Fia, Far)) (27)

In this scenario, the computation of the distance between F;; and F5; is carried out as follows.

D(Fi1, Far) = = (Jofy — ady| + |6, — B31]) (28)

DN | —

Substituting the values of o1, 5;1 (Where ¢ = 1, 2) from Table 1, along with ¢ = 3, into Equation
(28), yields D(Fi1, F21) = 0.0185. Similarly, calculating the distances results in D(Fy;, F31) =
0.0305, and D(Fi1, F41) = 0.1365 . By substituting these values into Equation (27), we find
U1 = 2.8145. Similarly, the values for U;; can be computed for: = 2,...,4and j = 2,...,4
using the same methodology. The resulting power weighting coefficients I4;; for each ¢-ROFN
JFi; are summarized in Table 2.

Table 2
Factor of Power Weighting Coefficients Uf;; for g-ROFN in Table 1

(F/o) oy Ay
Fi 2.8145 2.4995 2.559 2.9015
Fo 2.8145 2.5185 2.456 2.8265
F3 27535 2.2405 2735 2.9015
Fu 2.5785 2.5185 2.698 2.9015

Compute the Factor of Prioritized Weighting Coefficients:

The factor of prioritized weighting coefficients, denoted as V;;, are computed for each g-ROFN
Fi; (Table1),wherei =1,2,...,4andj = 1,2, ..., 4. Specifically, we focus on the computation
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Step 6.

of Vi1, Va1, V31 and the remaining coefficients can be determined similarly. From the equation
labeled as Equation 21, we obtain

Vll - 1
By referring to Equation 22, it follows that
1, q
Vor = S8(Fu) = 2 + 5(0411 - B11) (29)
11, PR S ;
Va1 = S(Fi)S(Far) = (5 + 5(0411 - ﬁ11))(§ + 5(0421 — 6831)) (30)

Substituting the values of o1, 5;1 (where i = 1,2) from Table 1, alongside ¢ = 3, into Equation
(29) and Equation (30), we obtain V,; = 0.8325 and V5, = 0.7084575. Similarly, the values for
V;; can be computed for i = 4 and j = 2, 3, 4 using the same methodology. The resulting factor
of prioritized weighting coefficients V;; for each ¢g-ROFN F;; are detailed in Table 3.

Table 3
Factor of Prioritized Weighting Coefficients V;; for g-ROFN in Table 1
(Fleot) o P2 P2 7
F1 1 1 1 1
Fo 0.8325 0.396 0.7555 0.451

T 07084575 0.109296  0.398904  0.2255
F4 05681829 0.0216406 0.2624788 0.1017005

Compute the Factor of Generalized Power Prioritized Weighting Coefficients:

Assuming the parameters ¢ = 0.7 and b = 0.3 in the interval [0, 1], the factor of generalized
power prioritized weighting coefficients, denoted as I';;, are computed for each q-ROFN F;;
(Table 1), wherei =1,2,...,4and j = 1,2, ..., 4. Specifically, we focus on the computation of
I'11, and the remaining coefficients can be determined similarly. From referencing Equation 23,
we derive:

[y = 1oy [a(1 + Uy ) + DV (31)

Replace tv; with the weights of criteria obtained in Step Step 2., {{;; with the corresponding
value from Table 2, and V;; with the respective value from Table 3 in Equation 31. This yields
I'ii = 0.59403. Similarly, fori = 2,...,4and j = 2,...,4, I';; values can be computed fol-
lowing the same procedure. The resulting factor of generalized power prioritized weighting
coefficients I';; for each g-ROFN F;; are presented in detail in Table 4.

Table
Factor of Generalized Power Prioritized Weigh;ng Coefficients I';; for g-ROFN in Table 1
(F/) &4 L2 oA o
Fi 0.59403 0.54993 0.55826  0.60621
Fo 0.87597 0.774525 0.793755 0.844155

F3 0.2839987 0.2301139 0.2734171 0.27987
Fu 1.0701619 0.9877769 1.0669375 1.1046241
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Step 7. Compute the Generalized Power Prioritized Weighting Coefficients:

Step 8.

Step 9.

The generalized power prioritized weighting coefficients 7);;, are calculated individually for each
g-Rung Orthopair Fuzzy number F;; (Table 1), wherei =1,2,... 4and j = 1,2, ..., 4. Specif-
ically, our focus is on determining the value of I';;, with the remaining coefficients following a
similar process. Referring to Equation (24), we derive:

1—\11
m =5 (32)
Z?:l Liy
Insert the value of I';; (i = 1,2,...,4) from Table 4 into Equation (32). Upon calculation,
Equation (32) produces I';; = 0.2103386. Similarly, the values of I';; can be computed for
1 = 2,...,4and 5 = 2,..., 4, following the same methodology. The resulting generalized

power prlorltlzed Welghtlng coefﬁuents n;; for each g-Rung Orthopair Fuzzy number F;; are
detailed in Table 5.

Table 5
Generalized Power Prioritized Weighting Coefficients I';; for g-ROFN in Table 1
(F/) A oty oy )

Fi 0.2103386 0.2163081 0.2073489 0.2138413
Fo 0.31017 0.3046498 0.2948165 0.2977767
F3 0.1005604 0.0905124 0.1015526 0.0987245
Fy 0.378931 0.3885297 0.3962819 0.3896575

Aggregate g-Rung Orthopair Fuzzy Numbers:

Aggregate the q-ROFNs, Fi;, Foj, ..., Fu; (j = 1,2,...,4), provided in Table 1, utilizing either
the AO, g-ROFGPOPRYWA (Equation (25)), or g-ROFGPOPRYWG (Equation (26)). Specifically,
focus on aggregating Fi1, Fa1, ..., Fu using the AO, g-ROFGPOPRYWA (Equation (25)), with
parameter ;. = 3, as follows.

q-ROFGPOPRYWA(Fy, Fo, ..., F) = & i Fi

1/3

A 1/3 4
1 — min{1, (Z ni(1 — 04?)3>1/3}] ) [min{l, (Z 771'(53)3)1/3}

Substitute the values of 7;; (i = 1,2, ...,4) from Table 5, and the values of

a;1,Ba (i =1,2,...,4) from Table 1 into Equation (25).

After computation, Equation (25) yields g-ROFGPOPRYWA(Fi1, Fa1, - - ., Fa1)

= <0.8510987, 0.3992658>. Similarly, aggregation of g-ROFNs, F;, Faoj, . .., Fuj

for j = 2,...,4 can be performed. Likewise, aggregation of g-ROFN,

Fij, Fajy - Fuaj (j =1,2,...,4), as provided in Table 1, can be carried out using the
AO, g-ROFGPOPRYWG (Equation (26)). The resulting aggregation values are displayed
in Table 6.

Compute the Score Value:

The scores for the aggregated information in Table 6 from Step 8. are computed using Equation
(1). These calculated scores are displayed in Table 7.
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Table 6
Aggregation values for g-ROFNs (Table 1) with proposed operators

Alternative q-ROFGPOPRYWA Operator -ROFGPOPRYWG Operator

o] 0.8510987,0.3992658 0.8719892, 0.3305903
Ko7 0.3473038,0.7574304 0.4003814,0.6767071
oy 0.6373476, 0.3617282 (0.7136214, 0.310282)
) 0.2770477,0.4470214 (0.2887968, 0.4003286)
Table 7
Score values for aggregated information given in Table 6
Proposed Operator A, Ay As Ay

q-ROFGPOPRYWA  0.7259164 0.2949367 0.6378097 0.4150131
g-ROFGPOPRYWG 0.7706994 0.3618372 0.7016697 0.4442341

Step 10. Determine the ranking of alternatives:

The ranking of alternatives <7, (j = 1,2,...,4) is determined based on the score values com-
puted in Step 9. Referring to Table 7, the ranking of alternatives .«7; (j = 1,2,...,4)is </ >
oy — = 2/ according to both the proposed aggregation operators, g-ROFGPOPRYWA and
q-ROFGPOPRYWG.

5.1 Analyzing the Sensitivity of Aggregation Operators under Fixed q and Varying
Parameters

The provided table (Table 8) offers a comprehensive sensitivity analysis of two proposed aggrega-
tion operators, “g-ROFGPOPRYWA"and “q-ROFGPOPRYWG”, across different parameter configurations
(g, a, b, ). Each row in the tables represents a specific parameter setting, showcasing how these op-
erators perform across four criteria (<#; to .27,). For instance, in the settingwhere ¢ = 3,a = 1,b = 0,
and u = 3, “g-ROFGPOPRYWA"achieves scores of 07256219 , 0.2952278 , 0.6376156 , 0.4157176 for
of; to &7, respectively, while “g-ROFGPOPRYWG"achieves scores of 0.7708255, 0.3621088, 0.6995772,
0.4448052 under the same configuration. These scores provide insights into each operator’s perfor-
mance across different criteria and parameter combinations, considering weights to, = [0.2,0.3, 0.1, 0.4]
(where i ranges from 1 to 4) for each criterion. The “Ranking”column in the tables offers a preference
order based on these scores, indicating the effectiveness of each operator under varying conditions.
A higher ranking suggests better performance, providing valuable insights into the suitability of “g-
ROFGPOPRYWA”and “g-ROFGPOPRYWG”for decision-making tasks. This ranking helps identify the
most effective operator for different parameter settings and criteria, aiding in making informed de-
cisions regarding the selection of aggregation operators. The graphical view of the sensitivity analysis
is depicted in Figure 4 .
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Table 8
Sensitivity analysis explored proposed aggregation operators across i, a, b, with fixed ¢ = 3.

Score Values

q a b I Proposed Operator Ranking
e ez} 2 )
; o 5 g-ROFGPOPRYWA 07256219 0.2952278 0.6376156  0.4157176 o) = ofy = ol = ol
g-ROFGPOPRYWG  0.7708255 0.3621088 0.6995772 0.4448052 o) = ol = Ay = oy
07 o3 . g-ROFGPOPRYWA 07135452 0.2848023 0.6261368 0.4099703 & = a3 = oy = oy

g-ROFGPOPRYWG 07731602 0.3753047 0.7081246 0.4466786 of, = oty = oy = oty

g-RLDFGPOPRYWA 0.6532524 0.1854934 0.5109691 0.3789703 & = s = oy = by
0.2 0.8 100

g-ROFGPOPRYWG 0.8204204 0.4460693 0792438 0.5150883 &) = a3 = <y = s

g-ROFGPOPRYWA  0.9001512  0.1526421 07008973 0.6042772 o) = a3l = ol = ol
o 1 1000

g-ROFGPOPRYWG  0.8452495 0.1998247 0.8363701 0.3957228 &/, = ls = 2y = <l

N Altel‘nat'rn.'el W Alternapive2 W Alternativg3 B Alternatived
0.8

0.6
0.4

0.2

g-ROFGPOPRYWA g-ROFGPOPRYWG | g-ROFGPOPRYWA g-ROFGPOPRYWG | g-ROFGPOPRYWA g-ROFGPOPRYWG | g-ROFGPOPRYWA g-ROFGPOPRYWG
(=1, b=0, p=3) [@=0.7, b=0.3, u=4) (a=0.2, b=0.8, p=100) (a=1, b=0, p=1000)

Fig. 4. Scores behavior of alternatives for different 1 and fixed ¢ = 4

5.2 Analyzing the Sensitivity of Aggregation Operators under Fixed ;. and Varying
q Parameters

The provided table (Table 9) and accompanying text present a sensitivity analysis of two proposed
aggregation operators, “q-ROFGPOPRYWA"and “q-ROFGPOPRYWG”, across different parameter con-
figurations (¢, a, b) with a fixed value of © = 4. Each row in the table represents a specific param-
eter setting, and the “Score Values”columns depict the performance of the operators across four
criteria (@7 to 7). For instance, under the setting where ¢ = 7,a = 1,b = 0, and ¢ = 4, “g-
ROFGPOPRYWA"achieves scores of 0.6972418, 0.278535, .6518909, 0.4035534 for <7, to «7,, respec-
tively, while “g-ROFGPOPRYWG”achieves scores of 0.7512792, 0.3713738, 0.7014765 and 0.4301778 un-
der the same configuration. These scores provide insights into each operator’s performance across dif-
ferent criteria and parameter combinations, considering weights to; = [0.2,0.1,0.2,0.3,0.2] (where
1 ranges from 1 to 4) for each criterion. These scores reflect the relative performance of the opera-
tors under different parameter combinations and criteria with ranking . The “Ranking”column offers a
preference order based on these scores, indicating the effectiveness of each operator. A higher rank-
ing suggests better performance, with operators ranked from most to least effective based on their
scores across the criteria, providing valuable insights into their suitability for decision-making tasks
under varying conditions.The graphical view sensitivity analysis is given in Figure 5
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Table 9
Sensitivity analysis explored proposed aggregation operators across ¢, a, b, with fixed 1 = 4.

Score Values

nooa b q Proposed Operator Ranking
ah oy s )
g-ROFGPOPRYWA  0.6972418 0.278535 0.6518909 0.4035534 & = ofy = ol = by
1 o 7
g-ROFGPOPRYWG 07512792 0.3713738 07014765 0.4301778 &, = s = gy = oy
g-ROFGPOPRYWA  0.6969732 0.2881966 0.6789159 0.4007726 ot = oty = Ay = s
07 03 25
g-ROFGPOPRYWG 07198459 0.3332042 07012722 0.410858 o) = s = Ay = oy
4
g-ROFGPOPRYWA  0.6998119 0.0527295 0.6955258 0.2506233 o) > oty = oy — s
0.2 0.8 100
g-ROFGPOPRYWG  0.9495733 0.3093027 0.8987316 0.6498578 /) = oty = aly > oy
q-ROFGPOPRYWA 0.5 0.5 0.5 0.5 o = oy = oty =
o 1 5000
g-ROFGPOPRYWG 0.5 0.5 0.5 0.5 G = oly = )y = oy
1
. [ | Anlernat'rvel M Alternptive? M Alternatived B Alternatived
0.6
04
0.2
0
g-ROFGPOPRYWA g-ROFGPOPRYWG | g-ROFGPOPRYWA g-ROFGPOPRYWG | g-ROFGPOPRYWA g-ROFGPOPRYWG | g-ROFGPOPRYWA g-ROFGPOPRYWG
(@=1, b=0, g=7) (8=0.7, b=0.3, g=25) {(a=0.2, b=0.8, g=100) {a=0, b=1, g=5000)

Fig. 5. Scores behavior of alternatives for different ¢ and fixed ;1 = 4

5.3 Comparative Evaluation of the Proposed Aggregation Operators

In this segment, we evaluate the presented model by comparing it with existing models to as-
sess the effectiveness and superiority of the proposed aggregation technique. The results in Table 10
indicate that the most favorable alternative among all the discussed operators is denoted as <7 af-
firming the consistency and credibility of the proposed model. While both the presented and existing
models yield identical optimal solutions for a Multiple Criteria Decision Making (MCDM) problem, the
Generalized Power Prioritized Yager Weighted operators exhibit sensitivity to extreme values. This
sensitivity enables them to capture noteworthy changes in input variables, proving beneficial in sit-
uations where specific variables exert a disproportionate influence on the overall aggregation. The
integration of power and prioritized Operators establishes a versatile framework capable of adapting
to diverse contexts and data distributions.
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Table 10

Score and ranking of the aggregated ¢-ROFN for <7; (j =1,...,4)withg=3and u =75

Operator Score Value Ranking
St S, Ss Sy

Frank Weighted Averaging (q-ROFFWA) [7] 0.6050 0.4531 0.5482 0.4964 of) = ofy = oy = oy
Frank Weighted Geometric (q-ROFFWG) [7] 0.6000 0.4428 0.5342 0.4921 9 = oy > Ay = o
Yager Weighted Averaging (Yg-ROFWA) [16] 0.1521 0.0003 0.0304 0.0000 | = oy = oy = s
Yager Weighted Geometric (Yq-ROFWG) [16] 0.5184 0.4373 0.5055 0.4995 A = 93 = ) = s
Einstein Weighted Averaging (q-ROFEWA) [8] 0.8154 0.3600 0.6438 0.4894 | = s = oy = oy
Einstein Weighted Geometric (q-ROFEWG) [8] 0.8003 0.3287 0.6013 0.4766 o) - ol = ) ~ s
Aczel-Alsina Weighted Averaging (q-ROFAAWA) [29] 0.8397 0.4160 07051 0.5021 @ = o3 > oy = oy
Aczel-Alsina Weighted Geometric (q-ROFAAWG) [29] 07444 0.2251 0.5304 0.4578 ) = aly = 2y — s
Schweizer-Sklar Power Weighted Averaging (q-ROFSSWA) [40] 07811 0.2718 0.6199 0.461 | = oty = aly = gty
Schweizer-Sklar Power Weighted Geometric (g-ROFSSWG) [40] 0.8180 0.3622 0.6812 0.4798 ) = oty = Ay — by

Generalized Power Prioritized Yager Weighted Average (q-ROFGPOPRYWA) 07038 0.2770 0.6167 0.4069 o = of3 = oy = oy

Generalized Power Prioritized Yager Weighted Geometric (G-ROFGPOPRYWG) 07756 0.3861 07109 0.4492 | = oty = oy = oy

6. Conclusion

This study makes a substantial contribution to the advancement of g-rung orthopair fuzzy sets
by introducing Yager t-norms and t-conorms, which serve as powerful mechanisms for managing un-
certainty and imprecision in complex decision-making contexts. We have systematically defined the
core operations of these aggregation tools, elucidating their underlying principles and establishing a
strong theoretical foundation for their practical deployment. A central innovation of our work is the
development of two novel aggregation operators—q-ROFGPOPRYWA and g-ROFGPOPRYWG—which
offer enhanced flexibility and effectiveness in aggregating g-rung orthopair fuzzy numbers. These
operators significantly expand the methodological arsenal available to decision scientists and prac-
titioners working in uncertain environments. flmportantly, the applicability and robustness of the
proposed methods were validated through a real-world case study focused on sustainable urban de-
velopment. By integrating artificial intelligence with a Multi-Criteria Decision-Making (MCDM) frame-
work, we demonstrated the practical value and reliability of our Yager-based aggregation operators
in addressing real-life challenges. In summary, this research fills a critical gap in the fuzzy set litera-
ture while introducing innovative tools that have the potential to transform decision-making under
uncertainty. The proposed Yager aggregation methods open new pathways for future exploration and
application across diverse domains requiring nuanced and resilient decision-support systems.

6.1 Limitations of the Proposed Study

While this study offers meaningful insights, several limitations should be acknowledged. Firstly,
the scope of the analysis may constrain its generalizability, as it emphasizes specific features of g-
rung orthopair fuzzy sets and particular application domains. Certain assumptions and model sim-
plifications may have reduced the ability to fully capture real-world complexities. The efficacy of the
proposed methodologies is contingent upon the availability and quality of input data, which may be
inconsistent or limited in some contexts. Furthermore, the algorithms introduced could present com-
putational challenges, particularly in terms of processing time and resource requirements. The evalu-
ation criteria employed, while relevant, may not encompass the full spectrum of factors necessary for
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comprehensive decision-making. Practical implementation might also necessitate a level of domain-
specific expertise, which could hinder broader adoption. Additionally, the findings may exhibit limited
external validity due to their reliance on specific datasets and contextual parameters. A lack of ex-
tensive comparison with alternative methodologies may obscure a clear understanding of the relative
strengths and weaknesses of the proposed approach. Lastly, the study does not fully explore future
uncertainties or ethical considerations, which may influence the applicability and societal impact of
the proposed techniques.

6.2 Future Research Directions

Future research can build upon the current study in several promising directions. First, extend-
ing Yager’s operations to encompass other types of fuzzy numbers and sets—such as intuitionistic,
hesitant, or interval-valued fuzzy sets—would demonstrate their adaptability across diverse decision-
making contexts. Enhancing the proposed aggregation operators to accommodate a greater num-
ber of criteria, improve computational efficiency, and support hybrid frameworks could significantly
broaden their applicability. Moreover, adapting the multi-criteria decision-making (MCDM) frame-
work to dynamic and real-time environments, incorporating mechanisms for advanced uncertainty
handling, and integrating machine learning techniques would further improve decision accuracy and
responsiveness. Expanding empirical validation through diverse case studies in sectors such as health-
care, finance, transportation, and environmental management would also enhance the external va-
lidity and global relevance of the methodology. The development of user-friendly software tools and
decision-support systems can facilitate practical implementation, while fostering interdisciplinary col-
laboration may yield novel insights, encourage cross-sector innovations, and enhance the societal im-
pact of the proposed approach.
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