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1. Introduction
Addressing contemporary urban challenges requires innovative and adaptive strategies. Advance-ments in intelligent technologies play a pivotal role in promoting sustainable urban development byenhancing resource efficiency, optimizing infrastructure, and strengthening urban resilience. This in-terdisciplinary approach supports smarter city planning and data-driven decision-making, enablingcities to respond dynamically to environmental and social pressures. Integrating such technologiesinto urban systems is essential for fostering innovation, resilience, and long-term sustainability. Forthe full forms of abbreviations used throughout this paper, please refer to the table provided in theAppendix.

1.1 Motivation for the Proposed Research

Urban planning is currently undergoing a significant transformation driven by the integration of ad-vanced technologies. These innovations have the potential to reshape and redefine the urban planninglandscape. However, numerous questions remain regarding their broader impacts on both theoret-ical research and practical implementation in urban and regional contexts, including the challengesthey pose and the strategies required to address them effectively [1]. As cities strive to enhance sus-tainability, there is an increasing need for innovative, technology-enabled solutions. Allam et al. [2]emphasize the importance of critically engaging with new technologies and advocate for their thought-ful integration into the societal framework. To this end, careful calibration and contextual adaptationare essential for building cities that are not only intelligent but also genuinely sustainable and re-silient. Advancements in urban systems can support resource optimization, improve infrastructureperformance, and drive innovation. Achieving sustainable urban development ultimately requires acomprehensive approach that balances environmental, economic, and social dimensions.The Multi-Criteria Decision-Making (MCDM) method stands as a potent approach in decision-making,providing a thorough assessment of multiple criteria, addressing subjectivity, ensuring transparency,and accommodating both quantitative and qualitative data [3–6]. MCDM represents a contemporaryapproach aimed at identifying the most favorable alternative that maximizes profit in accordance withattribute values. The theory and methodologies of MCDM find application in making significant de-cisions across various domains, including personnel selection, industrialization, waste management,site selection, urban innovation, and more. The MCDM procedure involves three crucial steps. Firstly,information about alternatives is gathered based on diverse attributes. Subsequently, the collectedinformation is aggregated to determine the overall decision value for the target. The final step involvesselecting the best option after ranking the alternatives in order of preference [7].q-rung orthopair fuzzy set (q-ROFS) is an extension of orthopair fuzzy sets that offers greater granu-larity for representing uncertainty and preferences. This enhanced expressiveness makes q-ROFS es-pecially valuable in fields such as urban planning, environmental management, and decision-makingunder uncertainty. Building on prior research in sustainable energy planning [8], our study employsq-ROFS and Yager operators to support sustainable urban innovation and resilience by effectively ad-dressing uncertainties in urban decision-making.
1.2 Literature Review

Traditional approaches in formal computing often produce precise, binary outcomes—typicallyexpressed as a definitive yes or no. However, this binary logic fails to capture the subtleties inher-ent in many real-world scenarios. To overcome this limitation, Zadeh introduced the Fuzzy Set (FS)theory in 1965 [9], which allows elements to possess membership grades within the unit interval [0,
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1]. Despite this advancement, FSs rely solely on membership values (MV), which can be insufficientfor complex decision-making contexts. Recognizing the need for richer information, Atanassov [10]introduced Intuitionistic Fuzzy Sets (IFSs), which incorporate both membership and non-membershipvalues (NMV). IFS theory has since been widely adopted in multiple criteria decision-making (MCDM).For example, Seikh and Mandal [11] introduced Dombi aggregation operators (AOs) for integrating jobdata in an intuitionistic fuzzy environment, while Senapati et al. [12] proposed Aczel-Alsina operatorsfor sustainable transportation practices. Other researchers, such as Gohain et al. [13], applied sym-metric distance measures for pattern recognition and clustering, and Ke et al. [14] devised a rankingmethod for site selection in photovoltaic poverty alleviation projects. Wan and Yi [15] extended thiswork with power average operators for trapezoidal IFSs using strict t-norms and t-conorms. A key lim-itation of IFSs is that the sum of MV and NMV must not exceed 1, which restricts their applicability inmore complex uncertainty modeling. To address this, Yager [16] introduced Pythagorean Fuzzy Sets(PyFS), where the sum of the squares of MV and NMV is restricted to 1. PyFS has proven effectivefor addressing complex MCDM problems [17, 18]. Building on this, Yager later introduced the q-rungorthopair fuzzy set (q-ROFS) [19], where the q-th powers of MV and NMV must sum to ≤ 1, allowingeven greater flexibility in handling uncertainty.Numerous applications of q-ROFSs have emerged: Wang et al. [20] proposed a q-ROF MABACmodel for MADM problems; Seikh and Mandal [7] developed q-ROF Frank AOs; Wang et al. [21, 22]introduced Muirhead mean and Hamy mean operators for decision fusion and ERP systems, respec-tively; and Kausar et al. [23] adapted the CODAS method for q-ROFSs in cancer risk assessment. Aggre-gation operators are essential for simplifying complex datasets, offering functions like sum, average,and count to extract meaningful insights. They are especially valuable in high-dimensional decisionenvironments where interpretability and precision are critical. In our study, we explore the role of ar-tificial intelligence in urban planning and propose a new class of q-rung orthopair fuzzy Yager aggrega-tion operators (q-ROFYAO). We thoroughly examine their mathematical properties and demonstratetheir ability to model uncertainty and nonlinear relationships with high precision. These operators,grounded in Yager’s t-norm, are particularly effective for capturing complex interdependencies, mak-ing them well-suited to applications in control systems, optimization, and decision-making processes.To validate our approach, we apply the q-ROFYAO within MCDM framework aimed at promoting sus-tainable urban innovation and resilience.
1.3 Research Gap

Before presenting the main contributions of this study, it is important to highlight the researchgaps that motivated our work. These include the limited exploration of ExpoLogarithmic t-norms andt-conorms within the q-rung orthopair fuzzy set (q-ROFS) framework, and the lack of a solid theoreticalfoundation for Yager aggregation tools. Moreover, the absence of specialized aggregation operatorsfor q-ROFSs and the insufficient validation of such operators in practical MCDM applications furtherunderscore the need for this research. Addressing these gaps forms the core of our study’s contribu-tions.
1.4 Research Questions

To guide this study, the following research questions are proposed:
( i). What are the key properties and contributions of Yager t-norms and t-conorms in the context offuzzy set theory?

( ii). How do Yager aggregation tools operate within the q-rung orthopair fuzzy set (q-ROFS) frame-
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work, and how do they support smooth and effective aggregation?

( iii). In what ways do the proposed operators—q-Rung Orthopair Fuzzy Generalized Power PrioritizedYager Weighted Average (q-ROFGPOPRYWA) and Weighted Geometric (q-ROFGPOPRYWG) Op-erators—differ from traditional methods, and what are their essential properties with illustrativeexamples?
( iv). How can the proposed operators be validated through a real-world MCDM problem focused onsustainable urban innovation and resilience using artificial intelligence?
1.5 Issues with Earlier Works

The proposed study is motivated by several gaps in the existing literature, including:
( i). Limited exploration and application of Yager t-norms and t-conorms in fuzzy set theory.

( ii). Inadequate analysis of Yager aggregation operations within the q-ROFS context.
( iii). Lack of specialized aggregation operators such as q-ROFGPOPRYWA and q-ROFGPOPRYWG inexisting research.
( iv). Limited empirical validation of proposed fuzzy operators in real-world MCDM applications, es-pecially within the context of sustainable urban development.
1.6 Main Contributions of the Study

To address the identified research gaps, this study makes the following key contributions:
( i). Introduction of Yager t-norms and t-conorms: The study introduces the Yager t norms and tnorms and explores their mathematical properties.

( ii). Formulation of Fundamental Operations: It details the core operations of Yager aggregationtools within the fuzzy set of orthopair q-rung (q-ROFS) framework, offering a foundation forsmooth and effective aggregation.
( iii). Development of Novel Aggregation Operators: Two new operators are proposed: q-Rung or-thopair fuzzy generalized power prioritized yager weighted average (q-ROFGPOPRYWA) andweighted geometric (q-ROFGPOPRYWG)—with an analysis of their properties and illustrativeexamples.
( iv). Validation via Real-World Application: The practical utility of the proposed operators is demon-strated through a real-world MCDM case study centered on sustainable urban development.
1.7 Organization of the Proposed Study

The structure of this study is organized as follows: Section 2 presents the fundamental conceptsthat form the theoretical foundation of the research. Section 3 introduces Yager’s operations on q-rung orthopair fuzzy numbers, highlighting their formulation and significance. Section 4 proposes theq-Rung Orthopair Fuzzy Generalized Power Prioritized Yager Weighted Aggregation Operators and ex-amines their mathematical properties in detail. Section 5 outlines the Multi-Criteria Decision-Making(MCDM) methodology, accompanied by a sensitivity analysis and a discussion of the advantages andlimitations of the proposed operators. Section 6 concludes the study by summarizing the key find-ings and implications. Finally, Section 7 provides an appendix with a tabular list of abbreviations usedthroughout the paper.
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2. Methodology

2.1 Background and Fundamentals

This section outlines the foundational concepts in fuzzy set theory, forming the basis for the anal-yses presented in the later sections. Definitions 2.1, 2.2, 2.3, and 2.4 introduce key constructs, includ-ing fuzzy sets (FS), intuitionistic fuzzy sets (IFS), Pythagorean fuzzy sets (PyFS), and q-rung orthopairfuzzy sets (q-ROFS). Example 2.1 illustrates the practical relevance of q-rung orthopair fuzzy numbers(q-ROFNs) through a real-world scenario. The section also explores Yager’s t-norm and t-conorm, fol-lowed by discussions on Yager’s Power Average (PA) and Prioritized Average (PRA) operators, whichare integral to the aggregation techniques developed later in the study. Unless otherwise specified,let X denote a non-empty universal set throughout this paper. Definition 2.5 introduces the scorefunction for q-ROFNs, while Definition 2.6 explains how to compare these score values. Overall, thissection establishes both the theoretical underpinnings and the practical context for applying q-ROFStheory, providing a solid foundation for the advanced methods and applications discussed in subse-quent sections. Here, we define a Fuzzy Set F over X as follows:
Definition 2.1. [9] The concept of a fuzzy set (FS) is defined as follows:

F = {(x, α(x)) : x ∈ X}

Here, α(x) is the membership grade of an element x ∈ X , while α(x) is restricted to values within the
interval [0, 1].

Clearing the path for the examination of uncertainty, Atanassov [10] introduced the concept ofintuitionistic fuzzy set (IFS) as an innovative framework designed to capture the nuanced aspects in-herent in decision-making processes.
Definition 2.2. [10] The concept of an intuitionistic fuzzy set (IFS) is defined as follows:

F = {(x, α(x), β(x)) : x ∈ X}

Here, α(x), β(x) are the membership and non-membership grades of an element x ∈ X , respectively.
Both α(x) and β(x) are constrained to values within the interval [0, 1], and α(x) + β(x) ≤ 1.

Ronald R. Yager, as outlined in his publication [16], introduced the Pythagorean fuzzy set (PyFS)framework, offering a novel approach to encapsulate uncertainty within the domainX . The distinctiverepresentation is formulated as follows:
Definition 2.3. [16] The concept of a Pythagorean fuzzy set (PyFS) is defined as follows:

F = {(x, α(x), β(x)) : x ∈ X}

Here, α(x), β(x) are the membership and non-membership grades of an element x ∈ X , respectively.
Both α(x) and β(x) are constrained to values within the interval [0, 1], and α(x)2 + β(x)2 ≤ 1.

In his pioneering research [19], Ronald R.Yager introduced the revolutionary concept of q-rungorthopair fuzzy set (q-ROFS) F over X , offering a unique characterization that extends beyond thetraditional fuzzy set framework.
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Definition 2.4. [19] The concept of a q-rung orthopair fuzzy set (q-ROFS) is defined as follows:

F = {(x, α(x), β(x)) : x ∈ X}

Here,α(x) and β(x) represent themembership and non-membership grades of an element x ∈ X ,
respectively. Both α(x) and β(x) are constrained to values within the interval [0, 1], and α(x)q +
β(x)q ≤ 1 (q ≥ 1). Furthermore, a q-rung orthopair fuzzy number (q-ROFN) is symbolized as F =
(α, β) or Ft = (αt, βt) for convenience (where t is a positive integer).

Liu et al. [24] proposed a score function for any q-ROFN, represented as F = (α, β), defined by
S(F) = αq − βq. The resulting value of S(F) may initially fall within the interval [−1, 1]. To enhancecomputational convenience and ensure that S(F) resides within the more practical interval [0, 1], wehave made a slight modification to Liu et al. [24]’s score function for q-ROFN as follows.
Definition 2.5. The score function for any q-rung orthopair fuzzy number (q-ROFN), F = (α, β), is
defined as follows:

S(F) = 1/2 + (1/2)(αq − βq) (1)
Liu et al. [24] revolutionize fuzzy set theory by presenting a novel perspective that sheds light onintricate relationships within q-rung orthopair fuzzy sets.

Definition 2.6. [25] For any two q-ROFNs, F1 = (α1, β1) andF2 = (α2, β2), the relationship between
the score values of F1 and F2 can be expressed as:

If S(F1) < S(F2) then F1 < F2

If S(F1) > S(F2) then F1 > F2

If S(F1) = S(F1) then F1 = F2

Drawing inspiration from Yager’s pioneering contributions in fuzzy set theory [19], this definitionintroduces Yager’s t-norm (YTN) and t-conorm (YTCN), thereby making a significant contribution to thefundamental principles of fuzzy logic.
Definition 2.7. [19] For any two x, y ∈ [0, 1], and µ ∈ (0,∞), Yager’s t-norm (YTN) and Yager’s t-
conorm (YTCN) are defined as follows.

YTN(x, y) = min{1, (xµ + yµ)1/µ}

YTCN(x, y) = 1−min{1, ((1− x)µ + (1− y)µ)1/µ}

Definition 2.8. [26] Consider a collection of criteria Fi for i = 1, 2, . . . ,m. The Power Average (PA)
Operator is defined as:

PA(F1,F2, . . . ,Fm) = ⊕m
i=1ηiFi, (2)

where the Power coefficients ηi are computed as:

ηi =
1 + Ui∑m

k=1(1 + Uk)
,

and Ui =
∑m

k=1
k ̸=i

[1− |Fi −Fk|] for i = 1, 2, . . . ,m.
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Definition 2.9. [27] Consider a collection of criteria Fi for i = 1, 2, . . . ,m. The Prioritized Average
(PRA) Operator is defined as:

PRA(F1,F2, . . . ,Fm) = ⊕m
i=1ηiFi,

where the Prioritized coefficients ηi are computed as:

ηi =
Vi∑m
k=1 Vk

,

with V1 = 1 and Vi =
∑i−1

k=1
S(Fi) (i = 2, . . . ,m).

3. Yager’s Operations on q-Rung orthopair Fuzzy Numbers

In this section, we introduce Yager’s operations, which include F1 ⊕ F2, F1 ⊗ F2, δF1, and F δ
1(δ > 0), applied specifically to q-rung orthopair fuzzy numbers. These operations leverage Yager’st-norm and t-conorm, as discussed in Definition 2.7.To illustrate the practical application of these Yager’s operations on q-rung orthopair fuzzy num-bers, we examine a real-life scenario: the sustainable urban development for Green InfrastructureProject within urban areas. Additionally, we discuss the essential properties of these operations, al-though formal proofs are not provided.

Definition 3.1. [16] The operations⊕ and⊗ by Yager between two q-ROFNs, F1 = (α1, β1) and F2 =
(α2, β2), with µ, δ > 0, are defined as follows:

F1 ⊕F2 =
([

1−min{1, ((1− αq
1)

µ + (1− αq
2)

µ)1/µ}
]1/q

,
[
min{(1, ((βq

1)
µ + (βq

2)
µ)1/µ}

]1/q)
F1 ⊗F2 =

([
min{1, ((αq

1)
µ + (αq

2)
µ)1/µ}

]1/q
,
[
1−min{1, ((1− βq

1)
µ + (1− βq

2)
µ)1/µ}

]1/q)
δF1 =

([
1−min{1, (δ(1− αq

1)
µ)1/µ}

]1/q
,
[
min{1, (δ(βq

1)
µ)1/µ}

]1/q) (3)
F δ

1 =
([

min{1, (δ(αq
1)

µ)1/µ}
]1/q

,
[
1−min{1, (δ(1− βq

1)
µ)1/µ}

]1/q)
To illustrate the operations by Yager on q-rung orthopair fuzzy numbers, represented as F1 ⊕

F2, F1 ⊗ F2, δF1, and F δ
1 , as defined in Definition 3.1, we delve into the practical application ofthe sustainable urban development for Green Infrastructure Project within urban areas as outlined inExample 3.2.

Example 3.2. In the evaluation of sustainable urban development initiatives, such as “Green Infrastruc-
ture Project Y”, professionals focus on specific criteria to ensure environmental resilience and commu-
nity well-being. This project aims to integrate green spaces and sustainable infrastructure into urban
areas, thereby enhancing quality of life and mitigating environmental risks.The evaluation of “Green
Infrastructure Project Y ”includes the following criteria:

( i). Green Space Accessibility (Criteria 1): Access to green spaces plays a crucial role in promoting
urban residents well-being and environmental sustainability [28]. By ensuring easy access to
parks, gardens, and recreational areas, cities can enhance physical and mental health while
fostering a deeper connection with nature.
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( ii). Stormwater Management (Criteria 2): Effective management of stormwater is vital for reduc-

ing flood risks and preserving water quality in urban areas [29, 30]. Implementing sustainable
drainage systems and green roofs can help mitigate the impact of heavy rainfall events, con-
tributing to overall resilience against climate change.

To quantify these criteria comprehensively, intelligent systems technology and q-rung orthopair fuzzy
numbers are employed.

For Green Space Accessibility (Criteria 1), represented by F1 = (0.7, 0.6), a membership grade of
0.7 indicates high accessibility to green spaces, while a non-membership grade of 0.6 denotes lower
accessibility.

Similarly, for Stormwater Management (Criteria 2), represented byF2 = (0.8, 0.7), a membership
grade of 0.8 indicates effective stormwater management practices, while a non-membership grade of
0.7 suggests areas for improvement.

By applying Yager’s operations on q-rung orthopair fuzzy numbers (such as⊕ and⊗ ), urban plan-
ners can integrate these criteria to assess the overall effectiveness of “Green Infrastructure Project
Y”in promoting sustainable urban development and resilience. While this example simplifies the eval-
uation to two criteria, real-world assessments of sustainable urban projects would consider a broader
range of factors, including biodiversity conservation, energy efficiency, and social equity, to ensure
comprehensive and effective urban planning and development strategies.

To assess the effectiveness of sustainability Regimen Y, Yager’s operations are utilized on q-rung
orthopair fuzzy numbers (q = 4), represented as F1 ⊕F2 and F1 ⊗F2, with the parameter µ fixed at
2 according to Definition 3.1. The process for computing F1 ⊕F2 is delineated in Equation (4).

F1 ⊕F2 = (α, β) (4)
Here, α is calculated using the provided data and Equation (3.1):

α =
[
1−min

(
1, ((1− αq

1)
µ + (1− αq

2)
µ)1/µ

)]1/q
=

[
1−min

(
1,
(
(1− 0.74)2 + (1− 0.84)2

)1/2)]1/4
= [1−min (1, 0.0.962299)]1/4

= 0.4406431

Similarly, the value of β in Equation (4) is determined using Equation (3.1) along with the provided
data. The resulting Yager’s operation, denoted as F1 ⊕F2, is expressed as:

F1 ⊕F2 = (0.4406431, 0.7227346)

Likewise, the computation of F1 ⊗F2 yields:

F1 ⊗F2 = (0.8300879, 0)

Applying the score function defined in Equation (1), we obtain the effectiveness scores: S(F1 ⊕F2) =
0.3824280 and S(F1 ⊗ F2) = 0.5791307. Thus, the effectiveness of sustainability Regimen Y, as
determined by Yager’s operations on q-rung orthopair Fuzzy Numbers (q = 4), is 0.3824280 forF1⊕F2

and 0.5791307 for F1 ⊗ F2. The values of the remaining Yager’s operations, δF1 and F δ
1 , can be

similarly determined for a fixed value of δ. Figure 1 enhances the visualization of sustainable urban
development for the Green Infrastructure Project as discussed in Example 3.2.
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Fig. 1. Visual representation of the sustainable urban development for the Green InfrastructureProject, as illustrated in Example 3.2.
Taking into account the fundamental characteristics of Yager’s operations ⊕ and ⊗, along withscalar multiplication and scalar power, as delineated in Theorem 3.1, we can observe their essentialproperties.

Theorem 3.1. [16] Let F1 and F2 represent two q-ROFNs, F1 = (α1, β1) and F2 = (α2, β2). For any
δ1, δ2 > 0, the following holds.

( i). F1 ⊕F2 = F2 ⊕F1.

( ii). F1 ⊗F2 = F2 ⊗F1.

( iii). δ1(F1 ⊕F2) = δ1F1 ⊕ δ1F2.

( iv). (δ1 + δ2)F1 = δ1F1 ⊕ δ2F1.

( v). (F1 ⊗F2)
δ1 = F δ1

1 ⊗F δ1
2 .

( vi). F δ1
1 ⊗F δ2

1 = F1
δ1+δ2 .

Proof. The proof is easily shown by applying Definition 3.1.
4. Innovative q-Rung Orthopair Fuzzy Generalized Power Prioritized
Yager Weighted Aggregation Operator and Its Distinctive Features

This section presents two novel approaches, q-ROFGPOPRYWA and q-ROFGPOPRYWG, specificallydesigned for integrating q-Rung Orthopair Fuzzy Numbers (q-RLDFNs). To illustrate their practical util-ity, we showcase real-world instances related to the Sustainable Transportation Plan within urbandevelopment. We delve into fundamental characteristics such as idempotency, boundedness, andmonotonicity.
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4.1 Exploring theAggregationOperator: q-RungOrthopair FuzzyGeneralized Power
Prioritized Yager Weighted Average

In this section, we introduce the concept of AO, which we denote as q-ROFGPOPRYWA. We demon-strate that when aggregating m q-ROFNs, they retain their q-ROFN nature under the influence of AO,specifically q-ROFGPOPRYWA. We illustrate the practical application of AO, q-ROFGPOPRYWA, in ur-ban development, particularly within the context of the Sustainable Transportation Plan (see Example4.4). A visual representation of this application is provided. Furthermore, we thoroughly examine andprovide simplified proofs for key properties of AO, q-ROFGPOPRYWA, such as Idempotency, Bounded-ness, and Monotonicity.Definition 4.1 outlines AO, known as q-ROFGPOPRYWA, which involves integrating q-ROFNs, de-noted as Fi, using generalized power prioritization weighting coefficients ηi. These coefficients aredetermined by calculating power weighting coefficient factors, denoted as Ui, and prioritized weight-ing coefficient factors, represented as Vi, using specified equations. These equations incorporate pa-rameters a and b within the range of [0, 1].
Definition 4.1. Let Fi = (αi, βi) for i = 1, 2, . . . ,m represent q-Rung Orthopair Fuzzy numbers (q-
ROFNs). Consider a weight vector W = [w1,w2, . . . ,wm] associated with the q-ROFNs Fi, where
wi > 0 and

∑m
i=1wi = 1. The q-Rung Orthopair Fuzzy Generalized Power Prioritized Yager Weighted

Average (q-ROFGPOPRYWA) aggregation operator is then defined as:

q-ROFGPOPRYWA(F1,F2, . . . ,Fm) = ⊕m
i=1ηiFi, (5)

The Generalized Power Prioritization weighting coefficients ηi are computed as:

ηi =
wi [a(1 + Ui) + bVi]∑m

k=1 wk [a(1 + Uk) + bVk]
, (6)

The calculation of the power weighting coefficient factors, denoted as Ui, involves the following
process:

Ui =
m∑
k=1
k ̸=i

[1−D(Fi,Fk)] .

The determination of the prioritized weighting coefficient factors, represented as Ui, entails the fol-
lowing procedure:

V1 = 1, (7)
Vi =

i−1∏
k=1

S(Fk), i = 2, . . . ,m. (8)
In this context, a and b belong to the interval [0, 1] and serve as adjustable parameters according to
specific needs. The power weighting coefficients, represented as Ui, the prioritized weighting coeffi-
cients, denoted as Vi, and the Generalized Power Prioritization weighting coefficients, referred to as
ηi, remain constant throughout the entire article unless explicitly stated otherwise.

Substituting a = 1 and b = 0 into Equation (6)results in the transformed equation, referred to asEquation (5). This transformed equation adopts the structure of the q-Rung Orthopair Fuzzy PowerYager Weighted Average (q-ROFPOYWA) Aggregation Operator, as specified in Definition 4.2.
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Definition 4.2. Let Fi = (αi, βi) for i = 1, 2, . . . ,m represent q-Rung Orthopair Fuzzy numbers (q-
ROFNs). Consider a weight vector W = [w1,w2, . . . ,wm] associated with the q-ROFNs Fi, where
wi > 0 and

∑m
i=1wi = 1. The q-Rung Orthopair Fuzzy Power YagerWeighted Average (q-ROFPOYWA)

Aggregation Operator is then defined as:

q-ROFPOYWA(F1,F2, . . . ,Fm) = ⊕m
i=1γiFi,

The Power weighting coefficients γi are computed as:

γi =
wi(1 + Ui)∑m

k=1 wk(1 + Uk)
,

Substituting a = 0 and b = 1 into Equation (6) results in the transformed equation, referred to asEquation (5). This transformed equation adopts the structure of the q-Rung Orthopair Fuzzy prioritizedYager Weighted Average (q-ROFPOYWA) AO, as specified in Definition 4.3.
Definition 4.3. Let Fi = (αi, βi) for i = 1, 2, . . . ,m represent q-Rung Orthopair Fuzzy Numbers (q-
ROFNs). Consider aweight vectorW = [w1,w2, . . . ,wm] associatedwith the q-ROFNsFi, wherewi >
0 and

∑m
i=1wi = 1. The q-Rung Orthopair Fuzzy Prioritized Yager Weighted Average (q-ROFPRYWA)

AO is then defined as:
q-ROFPRYWA(F1,F2, . . . ,Fm) = ⊕m

i=1ψiFi,

The Prioritized weighting coefficients ψi are computed as:

ψi =
wiVi∑m

k=1 wkVk

,

The following Theorem 4.1 establishes the aggregated value of q-ROFNs as Fi = (αi, βi) for i =
1, 2, . . . ,m, through the utilization of the q-Rung Orthopair Fuzzy Generalized Power Prioritized YagerWeighted Average (q-ROFGPOPRYWA) operator (Equation (5)).
Theorem 4.1. The combined value of q-Rung Orthopair Fuzzy Numbers (q-ROFNs), denoted as Fi =
(αi, βi) for i = 1, 2, . . . ,m, using the q-Rung Orthopair Fuzzy Generalized Power Prioritized Yager
Weighted Average (q-ROFGPOPRYWA) operator, also results in a q-ROFN. The aggregation process is
outlined as follows:

q-ROFGPOPRYWA(F1,F2, . . . ,Fm) = ⊕m
i=1ηiFi[

1−min{1, (
m∑
i=1

ηi(1− αq
i )

µ)1/µ}

]1/q

,

[
min{1, (

m∑
i=1

ηi(β
q
i )

µ)1/µ}

]1/q
 (9)

Proof. Mathematical induction offers a dependable approach to confirming the validity of a proof.
Case 1. Let us suppose m equals 2, and denote η1F1 as (ᾱ1, β̄1), and η2F2 as (ᾱ2, β̄2). In accordancewith Equation (3.1), we can then express the following relationship:

q-ROFGPOPRYWA(F1,F2) = ⊕2
i=1ηiFi([

1−min{1, ((1− ᾱ1
q)µ + (1− ᾱ2

q)µ)1/µ}
]1/q

,
[
min{(1, ((β̄1

q
)µ + (β̄2

q
)µ)1/µ}

]1/q) (10)
It is evident that for each i = 1, 2, based on Equation (3), the following relations hold.

T̄i =

[
1−min{1, (ηi(1− Tq

i )
µ)1/µ}

]1/q for all T = α
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T̄i =

[
min{1, (ηi(Tq

i )
µ)1/µ}

]1/q for all T = β

Substituting these expressions into Equation 10, we obtain the modified form of Equation 10.
q-ROFGPOPRYWA(F1,F2) = ⊕2

i=1ηiFi[
1−min{1, (

2∑
i=1

ηi(1− αq
i )

µ)1/µ}

]1/q

,

[
min{1, (

2∑
i=1

ηi(β
q
i )

µ)1/µ}

]1/q


Case 2. If the result holds for m = p, we can establish its validity for m = p + 1. Let us assume that
⊕p

i=1ηiFi = (ᾱ∆, β̄∆) and ηp+1Fp+1 = (ᾱp+1, β̄p+1). Then, in accordance with Equation (3.1),we obtain:
q-ROFGPOPRYWA(F1,F2, . . . ,Fp,Fp+1) = ⊕p

i=1ηiFi ⊕ ηp+1Fp+1([
1−min{1, ((1− ᾱq

∆)
µ + (1− ᾱq

p+1)
µ)1/µ}

]1/q
,
[
min{(1, ((β̄q

∆)
µ + (β̄q

p+1)
µ)1/µ}

]1/q)
It is evident that from the assumption, we have the following.

T̄∆ =

[
1−min{1, (

p∑
i=1

ηi(1− T q
i )

µ)1/µ}
]1/q for all T = α

T̄∆ =

[
min{1, (

p∑
i=1

ηi(T q
i )

µ)1/µ}
]1/q for all T = β

Again, from Equation (3), we have the following.
T̄p+1 =

[
1−min{1, (ηp+1(1− T q

p+1)
µ)1/µ}

]1/q for all T = α

T̄p+1 =

[
min{1, (ηp+1(T q

p+1)
µ)1/µ}

]1/q for all T = β

If we substitute these values into Equation 2, then Equation 2 becomes as follows.
q-ROFGPOPRYWA(F1,F2, . . . ,Fp+1) = ⊕p+1

i=1 ηiFi[
1−min{1, (

p+1∑
i=1

ηi(1− αq
i )

µ)1/µ}

]1/q

,

[
min{1, (

p+1∑
i=1

ηi(β
q
i )

µ)1/µ}

]1/q


Therefore, the result remains valid for all values of m.

Example 4.4. The Sustainable Transportation Plan(STP) [31] plays a crucial role in urban develop-
ment, exerting significant influence on environmental sustainability and public welfare. Serving as a
comprehensive guide, it ensures that transportation initiatives are executed effectively, aiming to mit-
igate environmental impact while improving overall urban livability. As urban planners evaluate this
plan, their focus centers on specific criteria pertaining to sustainable transportation and its impact on
the community.
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(i) Emission Reduction (Criteria 1)[32]: A key objective of the STP is to minimize emissions from

transportation activities, thereby improving air quality andmitigating climate change effects. By
optimizing transportation protocols, urban planners aim to reduce vehicle emissions, positively
impacting environmental and public health outcomes. Furthermore, a significant reduction in
emissions not only enhances local air quality but also contributes to global efforts to combat
climate change, reinforcing the overall sustainability of urban transportation systems.

(ii) Mode Share Shift (Criteria 2)[33]:Promoting a shift towards sustainable modes of transporta-
tion, such as walking, cycling, and public transit, is essential for reducing traffic congestion and
dependence on fossil fuels. Evaluating the effectiveness of the STP in encouraging mode share
shifts is crucial for optimizing urban mobility and reducing greenhouse gas emissions. Further-
more, a higher mode share for sustainable transportation options enhances community well-
being by providing equitable access to affordable and environmentally friendly transportation
alternatives.

(iii) Accessibility and Equity (Criteria 3)[34]: Assessing the accessibility of transportation services
and ensuring equity in transportation planning is fundamental for promoting social inclusion
and enhancing urban mobility for all residents. This criterion evaluates the STP’s effectiveness in
providing equitable access to transportation options, particularly for marginalized communities
and underserved areas. Improving accessibility and equity in transportation not only enhances
quality of life but also fosters economic development and social cohesion within urban areas.

To demonstrate the application of an assessment framework, attention is focused on three critical
criteria: Emission Reduction, Mode Share Shift, and Accessibility and Equity. However, it’s important
to note that evaluating the sustainable transportation plan should extend beyond these criteria. Uti-
lizing advanced methodologies and leveraging data analytics specifically tailored for urban planning,
these criteria can be quantified to ensure a comprehensive assessment of the plan’s effectiveness in
promoting sustainable urban transportation.

For Criteria 1, Emission Reduction, represented byF1 = (0.7, 0.3), themembership grade 0.7 signifies
a high likelihood of achieving significant emission reductions, while the non-membership grade 0.3
denotes a lower likelihood.

Similarly, for Criteria 2, Mode Share Shift, represented by F2 = (0.8, 0.2). A membership grade of
0.8 indicates amoderate-to-high likelihood of shiftingmode shares towards sustainable options, while
a non-membership grade of 0.2 suggests a moderate-to-low likelihood.

For Criteria 3, Accessibility and Equity, represented by F3 = (0.9, 0.8), the membership grade
0.9 signifies a high likelihood of improving accessibility and equity in transportation, while the non-
membership grade 0.8 denotes a moderate likelihood.

Assuming weights w1 = 0.2, w2 = 0.3, and w3 = 0.5 for F1, F2, and F3 respectively, these
weights and fuzzy numbers are applied solely for illustrating the application of AO, q-ROFGPOPRYWA
(Equation (9)) in the environment of q-ROFNs. They do not represent real evaluation. To assess the
efficacy of the sustainable transportation plan, the AO, q-ROFGPOPRYWA as defined in Equation (9)
can be employed with the parameters µ = 3, a = 0.2, and b = 0.8. Initially, calculate the power
weighting coefficient factor denoted as U1, defined in (2.8).

U1 =
3∑

k=1
k ̸=1

[1−D(F1,Fk)] = [1−D(F1,F2)] + [1−D(F1,F3)] (11)
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Here, the computation ofD(F1,F2) involves utilizing the provided data and applying Equation

D(F1,F2) =
1

2
(|αq

1 − αq
2|+ |βq

1 − βq
2|)

=
1

2
(|0.74 − 0.84|+ |0.34 − 0.24|)

= 0.088000

Similarly, the distanceD(F1,F3) is calculated to be 0.4087500. Substituting these values into Equation(11), we find U1 = 1.50325. Likewise, we can determine U2 = 1.58475 and U3 = 1.264 using the same
approach. From Equation (7), the prioritized weighting coefficient factor V1 = 1. Furthermore, the
prioritized weighting coefficient factors Vi for i = 2, 3 can be calculated as defined in Equation (8).

V2 =
1∏

k=1

S(Fk) = S(F1) (12)

V3 =
2∏

k=1

S(Fk) = S(F1)S(F2) (13)
In this context, the calculation of S(F1) involves utilizing the provided data and applying Equation (1):

S(F1) =
1

2
+

1

2
(αq

1 − βq
1)

=
1

2
+

1

2
(0.74 − 0.34)

= 0.616

In a similar manner, we can compute S(F2) = 0.7040000. Substituting these values into Equation(12) and Equation (13), we obtain V2 = 0.616 and V3 = (0.616)(0.7040000) = 0.433664. Now, let us
calculate the Generalized Power Prioritization weighting coefficient η1 using Equation (14) as follows.

η1 =
w1 [a(1 + U1) + bV1]∑3
k=1wk [a(1 + Uk) + bVk]

, (14)
Here, w1 [a(1 + U1) + bV1] = (0.2) [(0.2)(1 + 1.50325) + (0.8)(1)] = 0.2601300. Similarly, we can
computew2 [a(1 + U2) + bV2] = 0.3029250 andw3 [a(1 + U3) + bV3] = 0.3998656. Substitute these
values into Equation (14), we get η1 = 0.2701469. Similarly, we can calculate η2 = 0.3145898 and
η3 = 0.4152633. Now, we can aggregate F1,F2, and F3 by utilizing AO, q-ROFGPOPRYWA (Equation(9)) as follows.

q-ROFGPOPRYWA(F1,F2,F3) = ⊕3
i=1ηiFi = (α, β) (15)

Here, the value of α is determined using the provided data and Equation (9):
α =

[
1−min

{
1, (η1(1− αq

1)
µ + η2(1− αq

2)
µ + η3(1− αq

3)
µ)

1
µ

}] 1
q

=
[
1−min

(
1,
(
(0.2701469)(1− 0.74)3 + (0.3145898)(1− 0.84)3 + (0.4152633)(1− 0.94)3

) 1
3

)] 1
4

= 0.8026375

Similarly, the value for β in Equation (15) is determined through the utilization of Equation (9) along
with the given data. The resulting AO, q-ROFGPOPRYWA (Equation (15)), is formulated as:

q-ROFGPOPRYWA(F1,F2,F3) = (0.8026375, 0.7435048)
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Applying the score function expressed in Equation (1) yields the following effectiveness score.

S(q-ROFGPOPRYWA(F1,F2,F3)) = 0.5547206

Therefore, the assessment of the sustainable transportation plan’s effectiveness, employing AO,
q-ROFGPOPRYWA on q-ROFNs with q = 4, yields a value of 0.5547206. Enhanced visualization for the
evaluation of the Sustainable Transportation Plan is illustrated in Figure 2, as elaborated in Example
4.4.

Fig. 2. Visualization depicting the evaluation of the Sustainable Transportation Plan, as discussed inExample 4.4
The Idempotency Property, as stated in Theorem 4.2, guarantees that employing the AO,

q-ROFGPOPRYWA, on tuples F1,F2, . . . ,Fm to produce F consistently delivers identical out-comes. This underscores its reliability in maintaining fundamental structures intact.
Theorem 4.2. (Idempotency Property) For any 1 ≤ i ≤ m, let Fi = (αi, βi), and suppose Fi = F ,
where F = (α, β). If the aggregation operator q-ROFGPOPRYWA is applied to F1,F2, . . . ,Fm,
the result is F .

Proof. If Fi is equal to F , then Equation (9) can be expressed in a simplified form as:
q-ROFGPOPRYWA(F1,F2, . . . ,Fm) = ⊕m

i=1ηiF[
1−min{1, (

m∑
i=1

ηi(1− αq)µ)1/µ}

]1/q

,

[
min{1, (

m∑
i=1

ηi(β
q)µ)1/µ}

]1/q
 , (16)

As a result of the constraint ∑m
i=1 ηi = 1, Equation (16) undergoes a transformation to become (α, β).Thus,
q-ROFGPOPRYWA(F1,F2, . . . ,Fm) = F .
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In Theorem 4.3, we establish bounds, denoted as F− and F+, by considering the minimum andmaximum values of parameters across a set of q-ROFNs. The theorem proves that when theq-ROFGPOPRYWA function is applied to these q-ROFNs, its output remains within these establishedbounds.

Theorem 4.3. (Boundedness Property) Consider q-ROFNs represented by Fi = ⟨(αi, βi)
for i = 1, 2, . . . ,m. Assume that

F− =
(
min

i
{αi},max

i
{βi}

)
,

F+ = (max
i

{αi},min
i
{βi})

We establish the inequality: F− ≤ q-ROFGPOPRYWA(F1,F2, . . . ,Fm) ≤ F+.

Proof. Based on our assumption, the following inequalities hold for each index i = 1, 2, . . . ,m.
min

i
Ti ≤ Ti ≤ max

i
Ti for T = α

max
i

Ti ≥ Ti ≥ min
i

Ti for T = β.

Therefore, the ensuing results are as follows:
min

i
Ti ≤

[
1−min{1, (

∑m
i=1 ηi(1− T q

i )
µ)1/µ}

]1/q
≤ max

i
Ti for T = α

max
i

Ti ≥
[
min{1, (

∑m
i=1 ηi(T

q
i )

µ)1/µ}
]1/q

≥ min
i

Ti for T = β.

Referring to Equation (9) and the score function outlined in Equation (1), we derive the subsequentresult.
S(F−) ≤ S(q-ROFGPOPRYWA(F1,F2, . . . ,Fm)) ≤ S(F+).

Hence, the proof is finalized in accordance with Definition 2.6.
Theorem 4.4 establishes that if one set of q-ROFNs is element-wise less than or equal to anotherset, the corresponding order of AO, q-ROFGPOPRYWA values remains unchanged.

Theorem 4.4. (Monotonicity Property) Let Fi = (αi, βi) for i = 1, 2, . . . ,m, and F ′
i = (α

′
i, β

′
i) for

i = 1, 2, . . . ,m represent the q-ROFNs. If Fi ≤ F ′
i for i = 1, 2, . . . ,m, then

q-ROFGPOPRYWA(F1,F2, . . . ,Fm) ≤ q-ROFGPOPRYWA(F ′
1,F

′
2, . . . ,F

′
m).

Proof. If we consider Fi ≤ F ′
i for i = 1, 2, . . . ,m, as specified by Equation (2.5), then we derive:
S(Fi) ≤ S(F ′

i ) for i = 1, 2, . . . ,m.

As a result, we obtain the subsequent inequalities:
Ti ≤ T ′

i for T = α

Ti ≥ T ′

i for T = β.

These inequalities can be converted into the following set of inequalities.
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1−min{1, (

∑m
i=1 ηi(1− T q

i )
µ)1/µ}

]1/q
≤[

1−min{1, (
∑m

i=1 ηi(1− (T ′
i )

q)µ)1/µ}
]1/q for T = α

[
min{1, (

∑m
i=1 ηi(T

q
i )

µ)1/µ}
]1/q

≥
[
min{1, (

∑m
i=1 ηi(T

′
i )

q)µ)1/µ
]1/q for T = β

Using Equation (9) and the score function defined in Equation (2.5), we obtain the following outcome.
S(q-ROFGPOPRYWA(F1,F2, . . . ,Fm) ≤ S(q-ROFGPOPRYWA(F ′

1,F
′
2, . . . ,F

′
m).

Hence, the verification is concluded relying on Definition 2.6.
4.2 q-Rung Orthopair Fuzzy Generalized Power Prioritized YagerWeighted Geomet-
ric Aggregation Operator

In this section, we introduce the concept of AO, represented as q-ROFGPOPRYWG. We establishthat when m q-ROFNs are aggregated, the resulting entity remains a q-ROFN under the influence ofAO, specifically q-ROFGPOPRYWG. The practical application of AO, denoted as q-ROFGPOPRYWG, isdemonstrated in the realm of environmental studies, particularly within the framework of the UrbanAgriculture and Food Security Plan (Example 4.8). A visual depiction of this application is presented.Furthermore, essential properties of AO, q-ROFGPOPRYWG, such as Idempotency, Boundedness, andMonotonicity, are thoroughly examined and supported by simplified proofs.Definition 4.5 introduces AO, identified as q-ROFGPOPRYWG, which encompasses the amalgama-tion of q-ROFNs, labeled as Fi, employing Generalized Power Prioritization weighting coefficients de-noted as ηi. These coefficients are derived by computing power weighting coefficients factors, sym-bolized as Ui, and prioritized weighting coefficients factors, represented as Vi, through prescribedequations. These equations involve parameters a and b confined within the interval of [0, 1].
Definition 4.5. Let Fi = (αi, βi) for i = 1, 2, . . . ,m represent q-Rung Orthopair Fuzzy Numbers (q-
ROFNs). Consider a weight vector W = [w1,w2, . . . ,wm] associated with the q-ROFNs Fi, where
wi > 0 and

∑m
i=1wi = 1. The q-Rung Orthopair Fuzzy Generalized Power Prioritized Yager Weighted

Geometric (q-ROFGPOPRYWG) AO is then defined as:

q-ROFGPOPRYWG(F1,F2, . . . ,Fm) = ⊗m
i=1ηiFi, (17)

When substituting a = 1 and b = 0 into Equation (14), we obtain the modified equation, denotedas Equation (17). This modified equation takes on the format of the q-Rung Orthopair Fuzzy PowerYager Weighted Geometric (q-ROFPOYWG) AO, outlined in Definition 4.6.
Definition 4.6. Let Fi = (αi, βi) for i = 1, 2, . . . ,m represent q-Rung Orthopair Fuzzy Numbers (q-
ROFNs). Consider a weight vectorW = [w1,w2, . . . ,wm] associated with the q-ROFNs {i, wherewi >
0 and

∑m
i=1wi = 1. The q-Rung Orthopair Fuzzy Power Yager Weighted Geometric (q-ROFPOYWG)

AO is then defined as:
q-ROFPOYWG(F1,F2, . . . ,Fm) = ⊗m

i=1γiFi,

Substituting a = 0 and b = 1 into Equation (14) results in the transformed equation, referredto as Equation (17). This transformed equation adopts the structure of the q-Rung Orthopair Fuzzyprioritized Yager Weighted Geometric (q-ROFPRYWG) AO, as specified in Definition 4.7.
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Definition 4.7. Let Fi = (αi, βi) for i = 1, 2, . . . ,m represent q-Rung Orthopair Fuzzy Numbers (q-
ROFNs). Consider a weight vector w = [w1,w2, . . . ,wm] associated with the q-ROFNs Fi, where
wi > 0 and

∑m
i=1 wwi = 1. The q-Rung Orthopair Fuzzy Prioritized Yager Weighted Geometric (q-

ROFPRYWG) AO is then defined as:

q-ROFPRYWG(F1, {2, . . . ,Fm) = ⊗m
i=1ψiFi,

The subsequent Theorem 4.5 establishes the combined value of q-ROFNs as Fi = (αi, βi) for
i = 1, 2, . . . ,m, employing the q-Rung Orthopair Fuzzy Generalized Power Prioritized Yager WeightedGeometric (q-ROFGPOPRYWG) operator (Equation (17)).
Theorem 4.5. The combined value of q-Rung Orthopair Fuzzy Numbers (q-ROFNs), denoted as Fi =
(αi, βi) for i = 1, 2, . . . ,m, using the q-Rung Orthopair Fuzzy Generalized Power Prioritized Yager
Weighted Geometric (q-ROFGPOPRYWG) operator, also results in a q-ROFN. The aggregation process
is outlined as follows:

q-ROFGPOPRYWG(F1,F2, . . . ,Fm) = ⊕m
i=1ηiFi[

min{1, (
m∑
i=1

ηi(α
q
i )

µ)1/µ}

]1/q

,

[
1−min{1, (

m∑
i=1

ηi(1− βq
i )

µ)1/µ}
]1/q , (18)

Proof. This can be demonstrated by employing the same methodologies as those utilized in Theorem4.1.
Example 4.8. (Urban Agriculture and Food Security Plan[35] ) The Urban Agriculture and Food Secu-
rity Plan (UAFSP) is an essential framework for addressing food insecurity and promoting sustainable
urban development. It aims to enhance food accessibility, improve nutritional outcomes, and foster
community resilience through urban agriculture initiatives. Urban planners evaluate this plan based
on specific criteria related to urban agriculture and its impact on food security.

( i). Food Production Capacity (Criteria 1)[36]: A key objective of the UAFSP is to increase local food
production capacity, thereby reducing dependence on external food sources and enhancing food
securitywithin urbanareas. By promotingurbanagriculture practices such as rooftopgardening,
community gardens, and vertical farming, urban planners aim to boost local food production.
This criterion evaluates the effectiveness of the UAFSP in facilitating increased food production
capacity, which is crucial for ensuring a reliable and sustainable food supply for urban residents.

( ii). Access to Fresh and Nutritious Food (Criteria 2)[37]: Promoting access to fresh, nutritious, and
culturally appropriate food is essential for addressing food insecurity and improving public health
outcomes. The UAFSP aims to enhance food access by supporting farmers’ markets, community-
supported agriculture (CSA) programs, and urban food distribution networks. Evaluating the
effectiveness of the UAFSP in improving access to fresh and nutritious food options is crucial for
enhancing food security and promoting healthy eating habits among urban residents.

( iii). Community Engagement and Participation (Criteria 3)[38]: Assessing community engagement
and participation in urban agriculture initiatives is fundamental for promoting social inclusion
and building community resilience. This criterion evaluates the UAFSP’s effectiveness in foster-
ing community involvement in food production, distribution, and decision-making processes. By
engaging residents in urban agriculture activities such as community gardening and educational
workshops, the UAFSP aims to strengthen social bonds and empower communities to address
food security challenges collectively.
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( iv). Resource Efficiency and Sustainability (Criteria 4)[39]: Assessing the resource efficiency and

sustainability of urban agriculture practices is crucial for ensuring the long-term viability of food
production systems. The UAFSP aims to promote sustainable agricultural techniques such as
rainwater harvesting, composting, and agroecological farming methods. Evaluating the effec-
tiveness of the UAFSP in enhancing resource efficiency and sustainability measures is essential
for minimizing environmental impact and optimizing resource utilization in urban agriculture.
By implementing sustainable practices, such as reducing water and energy consumption, mini-
mizing waste generation, and promoting biodiversity, the UAFSP contributes to the resilience of
urban food systems and mitigates ecological footprints.

For Criteria 1, Food Production Capacity, represented by F1 = (0.7, 0.3), a membership grade
of 0.7 signifies a moderate-to-high likelihood of increasing food production capacity through urban
agriculture initiatives, while a non-membership grade of 0.3 suggests a moderate-to-low likelihood.
Similarly, for Criteria 2, Access to Fresh andNutritious Food, represented byF2 = (0.9, 0.4), amember-
ship grade of 0.9 indicates a high likelihood of improving access to fresh and nutritious food options,
while a non-membership grade of 0.4 denotes a lower likelihood. For Criteria 3, Community Engage-
ment and Participation, represented byF3 = (0.8, 0.1), a membership grade of 0.8 signifies a moder-
ate likelihood of fostering community engagement and participation in urban agriculture initiatives,
while a non-membership grade of 0.1 denotes a moderate likelihood. For Criteria 4, Resource Effi-
ciency and Sustainability, represented by F4 = (0.9, 0.3), a membership grade of 0.9 signifies a high
likelihood of promoting resource efficiency and sustainability in urban agriculture practices, while a
non-membership grade of 0.3 suggests a moderate likelihood.

Given the weights w1 = 0.1, w2 = 0.3, w3 = 0.2, and w4 = 0.4 assigned to F1, F2, F3, and
F4 respectively, along with the q-ROFNs, it is important to note that these values are used solely forillustrative purposes in the context of AO, q-ROFGPOPRYWG (Equation (5)) within the framework ofq-ROFNs (q = 3), and do not reflect real evaluation. To evaluate the effectiveness of urban agricultureand food security plan, we apply AO, q-ROFGPOPRYWG using the parameters µ = 3, a = 0.7, and
b = 0.3.Firstly, we compute the power weighting coefficient factors, Ui for i = 1, 2, 3, 4, as defined in (2.8),following a similar procedure as in Example 4.4. These values are: U1 = 2.498, U2 = 2.63, U3 = 2.641,and U4 = 2.667.Next, we determine the prioritized weighting coefficient factorV1 = 1 using Equation (7). Then, wecompute Vi for i = 2, 3, 4 using Equation (8) with the same procedure used in Example 4.4, resultingin V2 = 0.658, V3 = 0.547785, and V4 = 0.4138516.With the prioritized weighting coefficients calculated, we proceed to compute the GeneralizedPower Prioritization weighting coefficient ηi for i = 1, 2, 3, 4, using Equation (14) and a similar proce-dure as in Example 4.4. The resulting values are η1 = 0.1012223, η2 = 0.30254, η3 = 0.1998252, and
η4 = 0.3964125.Finally, we aggregate F1, F2, F3, and F4 using AO, q-ROFGPOPRYWG (Equation (17)).

q-ROFGPOPRYWG(F1,F2,F3,F4) = ⊗4
i=1ηiFi = (α, β) (19)

In this context, we ascertain the value of α by utilizing the given data and referencing Equation (5).
α =

[
min{1, (η1(αq

1)
µ + η2(α

q
2)

µ + η3(α
q
3 + η4(α

q
4)

µ)1/µ}
]1/q

=
[
1−min

(
1,
(
(0.101)(1− 0.73)3 + (0.302)(1− 0.93)3 + (0.199)(1− 0.83)3 + (0.396)(1− 0.93)3

)1/3)]1/3
= 0.8753343
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Similarly, the values of β in Equation (19) are determined using Equation (17) and the provided data.The resulting AO, denoted as q-ROFGPOPRYWG (Equation (19)), can be expressed as follows:

q-ROFGPOPRYWG(F1,F2,F3,F4) = (0.8753343, 0.3190233)

By applying the score function presented in Equation (1), the corresponding effectiveness scoresare obtained:
S(q-ROFGPOPRYWG(F1,F2,F3,F4)) = 0.8515795

The effectiveness of urban agriculture and food security plan, utilizing AO q-ROFGPOPRYWG onq-ROFNs with q = 3, results in a value of 0.8515795. The Assessment Framework for urban agricultureand food security plan, discussed in Example 4.8, is illustrated in Figure 3.

Fig. 3. Urban Agriculture and Food Security Plan discussed in Example 4.8
The Idempotency Property (Theorem 4.6) ensures that applying the AO, q-ROFGPOPRYWGto tuples F1,F2, . . . ,Fm equivalent to F yields the same result, highlighting its stability in preservingunderlying structures.

Theorem 4.6. (Idempotency Property) For any 1 ≤ i ≤ m, let Fi = (αi, βi), and suppose Fi = F ,
where F = (α, β). If the aggregation operator q-ROFGPOPRYWG is applied to F1,F2, . . . ,Fm,
the result is F .

Proof. Demonstration of this can be established through employing the same methodologies as thoseemployed in Theorem 4.2.
Theorem 4.7. (Boundedness Property) Consider q-ROFNs represented by Fi = (αi, βi)
for i = 1, 2, . . . ,m. Assume that

F− =
(
min

i
{αi},max

i
{βi}

)
F+ =

(
max

i
{αi},min

i
{βi}

)
We establish the inequality: F− ≤ q-ROFGPOPRYWG(F1,F2, . . . ,Fm) ≤ F+.
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Proof. Demonstration of this can be established through employing the same methodologies as thoseemployed in Theorem 4.3.

Theorem 4.8 establishes that if one set of q-ROFNs is element-wise less than or equal to anotherset, the corresponding AO, q-ROFGPOPRYWG values maintain the same order.
Theorem 4.8. (Monotonicity Property) Let Fi = (αi, βi) for i = 1, 2, . . . ,m, and F ′

i = (α
′
i, β

′
i) for

i = 1, 2, . . . ,m represent the q-ROFNs. If Fi ≤ F ′
i for i = 1, 2, . . . ,m, then

q-ROFGPOPRYWG(F1,F2, . . . ,Fm) ≤ q-ROFGPOPRYWG(F ′
1,F

′
2, . . . ,F

′
m).

Proof. Demonstration of this can be established through employing the same methodologies as thoseemployed in Theorem 4.4.
5. Multi-Criteria DecisionMakingMethodology and Its Practical Ap-
plication

The Multi-Criteria Decision Making (MCDM) Method comprises several key steps: identifying al-ternatives and criteria, assigning weights to each criterion, and employing q-Rung Orthopair FuzzyNumbers to evaluate criteria against alternatives. The process then involves computing factor coef-ficients, such as power weighting and prioritized weighting coefficients. These coefficients are amal-gamated into generalized power prioritized weighting coefficients, which are utilized for aggregatingq-Rung Orthopair Fuzzy Numbers. Finally, a score value is computed for the aggregated informationto determine the ranking of alternatives based on their performance against the specified criteria.
Step 1. Alternatives and Criteria Identification:

Consider a set of alternatives, A1,A2, . . . ,An, and a set of criteria, F1,F2, . . . ,Fm.
Step 2. Weight assigned to each criterion for identification:

Let wi represent the weight assigned to criteria Fi, where wi > 0 for i = 1, 2, . . . ,m, and∑m
i=1 wi = 1.

Step 3. Criterion-Alternative Evaluation using q-Rung Orthopair Fuzzy Numbers:
For each criterion Fi (i = 1, 2, . . . ,m), the evaluation against each alternative
Aj (j = 1, 2, . . . , n) is conducted utilizing q-Rung Orthopair Fuzzy Numbers. This is representedas Fij = (αij, βij) for i = 1, 2, . . . ,m and j = 1, 2, . . . , n.

Step 4. Compute the Factor of Power Weighting Coefficients:
The factor of power weighting coefficients Uij (Equation (2.8)) are computed for every q-RungOrthopair Fuzzy number Fij , where i = 1, 2, . . . ,m and j = 1, 2, . . . , n, in the following man-ner.

Uij =
m∑
k=1
k ̸=i

[1−D(Fij,Fkj)] (20)

In this context, the distance between Fij and Fkj is computed using the following calculation.
D(Fij,Fkj) =

1

2
(|αij − αkj|+ |βij − βkj|)
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Step 5. Compute the Factor of Prioritized Weighting Coefficients:

The factor of prioritized weighting coefficientsV1j (Equation (7)) andVij (Equation (8)) are com-puted for each q-Rung Orthopair Fuzzy number Fij , where i = 1, 2, . . . ,m and j = 1, 2, . . . , n,in the following manner.
V1j = 1, (21)

Vij =
i−1∏
k=1

S(Fkj), i = 2, . . . ,m. (22)
In this context, the score of Fkj is computed using the following calculation.

S(Fkj) =
1

2
+

1

2
(αq

kj − βq
kj)

Step 6. Compute the Factor of Generalized Power Prioritized Weighting Coefficients:
Formulate the factor of generalized power prioritized weighting coefficients ηij by incorporatingthe criteria weights wi (where i ranges from 1 tom), along with parameters a and b constrainedto the interval [0, 1] for each q-Rung Orthopair Fuzzy number Fij , where i = 1, 2, . . . ,m and
j = 2, . . . , n. This formulation integrates the factor of power weighting coefficients Uij and thefactor of prioritized weighting coefficients Vij .

Γij = wi [a(1 + Uij) + bVij] (23)
Step 7. Compute the Generalized Power Prioritized Weighting Coefficients:

The generalized power prioritized weighting coefficients ηij (Equation (14)) are computed foreach q-Rung Orthopair Fuzzy number {ij , with i = 1, 2, . . . ,m and j = 1, 2, . . . , n, utilizingEquation (23). The calculation is expressed by:
ηij =

Γij∑m
i=1 Γij

(24)
Step 8. Aggregate q-Rung Orthopair Fuzzy Numbers:

Aggregate each grouping of q-Rung Orthopair Fuzzy numbers
F1j,F2j, . . . ,Fmj (j = 1, 2, . . . , n) using either q-ROFGPOPRYWA (Equation (9)) orq-ROFGPOPRYWG (Equation (18)).

q-ROFGPOPRYWA(F1,F2, . . . ,Fm) = ⊕m
i=1ηiFi[

1−min{1, (
m∑
i=1

ηi(1− αq
i )

µ)1/µ}

]1/q

,

[
min{1, (

m∑
i=1

ηi(β
q
i )

µ)1/µ}

]1/q
 (25)

(or)
q-ROFGPOPRYWG(F1,F2, . . . ,Fm) = ⊕m

i=1ηiFi[
min{1, (

m∑
i=1

ηi(α
q
i )

µ)1/µ}

]1/q

,

[
1−min{1, (

m∑
i=1

ηi(1− βq
i )

µ)1/µ}
]1/q , (26)
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Step 9. Compute the Score Value:

The score value for the aggregated information in Step Step 8. (Equation (25) or Equation (26))is computed using Equation (1).
Step 10. Determine the ranking of alternatives:

The ranking of alternatives Aj (j = 1, 2, . . . , n) is determined based on the score value com-puted in Step Step 9..
Example 5.1. (Sustainable Urban Development)

Sustainable urban development remains a cornerstone in addressing the multifaceted challenges
thatmodern cities face, including climate change, inequality, and infrastructure stress. To advance this
agenda, cities are increasingly adopting a mix of inclusive and tech-enabled solutions. This example
highlights four promising alternatives: Inclusive Urban Governance, Net-Zero Urban Districts, Urban
Agriculture andVertical Farming, andDigital TwinUrban Planning. The importance of each is discussed
below:

( i). Inclusive Urban Governance (A1): Inclusive Urban Governance ensures that diverse voices are
represented in planning and decision making, especially those of marginalized communities. It
strengthens democracy, accountability, and social equity in urban development processes.
Key elements of Inclusive Urban Governance include:

(a) Participatory Budgeting: Citizens co-decide howa portion of themunicipal budget is spent,
improving transparency and aligning priorities with local needs.

(b) DecentralizedGovernance Structures: Local councils and neighborhood assemblies enable
more responsive governance and community oversight.

(c) Digital Civic Platforms: Apps and online platforms allow residents to give feedback, track
city services, and engage in urban policy dialogues.

(d) Equity Audits: Policy and project reviews assess and address potential disparities in urban
service delivery and access.

( ii). Net-Zero Urban Districts (A2): Net-Zero Urban Districts aim to produce as much energy as they
consume annually through renewable energy, efficiency, and sustainable design. These districts
are models for carbon-neutral urban growth.
Core strategies of Net-Zero Districts include:

(a) District Heating and Cooling Systems: Shared infrastructure reduces emissions and in-
creases energy efficiency across buildings.

(b) High-Performance Building Envelopes: Super-insulated structures minimize heating and
cooling demands.

(c) On-site Renewable Energy: Solar, wind, or geothermal systems meet energy needs at the
district scale.

(d) Net Energy Monitoring Systems: Real-time dashboards enable residents and managers to
track energy use and production.

( iii). Urban Agriculture and Vertical Farming (A3): Urban Agriculture and Vertical Farming address
food security and ecological sustainability by localizing food production within the city. They
reduce food miles, enhance green cover, and create job opportunities.
Significant features include:
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(a) Rooftop and Indoor Farms: Use hydroponics, aeroponics, and LED lighting to produce food

in dense urban areas.

(b) Community Gardens: Shared plots managed by residents foster food sovereignty and so-
cial cohesion.

(c) Edible Landscapes: Public spaces planted with fruit trees and vegetables integrate food
production into daily urban life.

(d) Waste-to-Fertilizer Systems: Composting urban organic waste closes the nutrient loop and
enriches urban soils.

( iv). Digital Twin Urban Planning (A4): Digital Twin Urban Planning leverages virtualmodels of cities
that are continuously updated with real-time data. These twins simulate scenarios, improve
planning accuracy, and enhance city management.

Key attributes include:

(a) Real-Time Monitoring: Sensor networks feed data into models for air quality, traffic, and
energy flows.

(b) Predictive Simulation: Helps anticipate outcomes of zoning changes, infrastructure up-
grades, and climate impacts.

(c) Stakeholder Visualization Tools: 3D interfaces allow planners and residents to interactively
explore future urban scenarios.

(d) Integration with IoT and AI: Combines smart infrastructure with data analytics for opti-
mized urban systems.

To address the Multi-Criteria Decision-Making (MCDM) challenge of selecting the most appropri-ate sustainable urban development alternative among Inclusive Urban Governance, Net-Zero UrbanDistricts, Urban Agriculture and Vertical Farming, and Digital Twin Urban Planning, it is essential toprioritize these options based on key criteria such as Participatory Governance, Carbon and ResourceEfficiency, Urban Resilience and Adaptability, and Systems Innovation and Integration.
Step 1. Alternatives and Criteria Identification:

The alternatives denoted as A1,A2,A3, and A4 represent Sustainable Urban Development,specifically Inclusive Urban Governance, Net-Zero Urban Districts, Urban Agriculture and Ver-tical Farming, and Digital Twin Urban Planning respectively. The criteria F1,F2,F3, and F4,are established as assessment parameters for Sustainable Urban Development, namely, Partic-ipatory Governance, Carbon and Resource Efficiency, Urban Resilience and Adaptability, andSystems Innovation and Integration respectively.
Step 2. Weight assigned to each criterion for identification:

Let us assume that w1 = 0.2,w2 = 0.3,w3 = 0.1, and w4 = 0.4, represent the weightsassigned to criteria F1,F2,F3,F4, respectively. It is important to note that these weights arenot based on real values but are used for illustrative purposes in the context of the proposedMulti-Criteria Decision-Making (MCDM) method (refer to Section 5).
Step 3. Criterion-Alternative Evaluation using q-Rung Orthopair Fuzzy Numbers:

Each criterion Fi (i = 1, 2, . . . , 4) is assessed against every alternative Aj (j = 1, 2, . . . , 4)using the q-Rung Orthopair Fuzzy Number (q-ROFN) representation with q = 3, denoted as
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Fij = ⟨(αij, βij)⟩ for i = 1, 2, . . . , 4 and j = 1, 2, . . . , 4. The tabular representation of q-ROFN is provided in Table 1. It is essential to emphasize that the values presented in Table 1 arehypothetical and are utilized for explanatory purposes within the framework of the proposedMulti-Criteria Decision-Making (MCDM) method (see Section 5).

Table 1Tabular form of q-ROFNs (q=3)
(F/A ) A1 A2 A3 A4

F1 (0.9,0.4) (0.2,0.6) (0.8,0.1) (0.3,0.5)
F2 (0.9,0.3) (0.4,0.8) (0.4,0.2) (0.2,0.2)
F3 (0.9,0.5) (0.5,0.9) (0.7,0.3) (0.3,0.5)
F4 (0.8,0.2) (0.3,0.6) (0.7,0.4) (0.3,0.4)

Step 4. Compute the Factor of Power Weighting Coefficients:
The factor of power weighting coefficients, denoted as Uij , are calculated for each q-ROFN Fij(Table 1), where i = 1, 2, . . . , 4 and j = 1, 2, . . . , 4. Specifically, we focus on the calculation of
U11, and the remaining coefficients can be determined in a similar fashion. Referring to Equation20, we obtain:

U11 = [1−D(F11,F21)] + [1−D(F11,F31)] + [1−D(F11,F41)] (27)
In this scenario, the computation of the distance between F11 and F21 is carried out as follows.

D(F11,F21) =
1

2
(|αq

11 − αq
21|+ |βq

11 − βq
21|) (28)

Substituting the values of αi1, βi1 (where i = 1, 2) from Table 1, along with q = 3, into Equation(28), yields D(F11,F21) = 0.0185. Similarly, calculating the distances results in D(F11,F31) =
0.0305, and D(F11,F41) = 0.1365 . By substituting these values into Equation (27), we find
U11 = 2.8145. Similarly, the values for Uij can be computed for i = 2, . . . , 4 and j = 2, . . . , 4using the same methodology. The resulting power weighting coefficients Uij for each q-ROFN
Fij are summarized in Table 2.

Table 2Factor of Power Weighting Coefficients Uij for q-ROFN in Table 1
(F/A ) A1 A2 A3 A4

F1 2.8145 2.4995 2.559 2.9015
F2 2.8145 2.5185 2.456 2.8265
F3 2.7535 2.2405 2.735 2.9015
F4 2.5785 2.5185 2.698 2.9015

Step 5. Compute the Factor of Prioritized Weighting Coefficients:
The factor of prioritized weighting coefficients, denoted as Vij , are computed for each q-ROFN
Fij (Table 1), where i = 1, 2, . . . , 4 and j = 1, 2, . . . , 4. Specifically, we focus on the computation
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of V11, V21, V31 and the remaining coefficients can be determined similarly. From the equationlabeled as Equation 21, we obtain

V11 = 1

By referring to Equation 22, it follows that
V21 = S(F11) =

1

2
+

1

2
(αq

11 − βq
11) (29)

V31 = S(F11)S(F21) = (
1

2
+

1

2
(αq

11 − βq
11))(

1

2
+

1

2
(αq

21 − βq
21)) (30)

Substituting the values of αi1, βi1 (where i = 1, 2) from Table 1, alongside q = 3, into Equation(29) and Equation (30), we obtain V21 = 0.8325 and V31 = 0.7084575. Similarly, the values for
Vij can be computed for i = 4 and j = 2, 3, 4 using the same methodology. The resulting factorof prioritized weighting coefficients Vij for each q-ROFN Fij are detailed in Table 3.

Table 3Factor of Prioritized Weighting Coefficients Vij for q-ROFN in Table 1
(F/A ) A1 A2 A3 A4

F1 1 1 1 1
F2 0.8325 0.396 0.7555 0.451
F3 0.7084575 0.109296 0.398904 0.2255
F4 0.5681829 0.0216406 0.2624788 0.1017005

Step 6. Compute the Factor of Generalized Power Prioritized Weighting Coefficients:
Assuming the parameters a = 0.7 and b = 0.3 in the interval [0, 1], the factor of generalizedpower prioritized weighting coefficients, denoted as Γij , are computed for each q-ROFN Fij(Table 1), where i = 1, 2, . . . , 4 and j = 1, 2, . . . , 4. Specifically, we focus on the computation of
Γ11, and the remaining coefficients can be determined similarly. From referencing Equation 23,we derive:

Γ11 = w1 [a(1 + U11) + bV11] (31)
Replace w1 with the weights of criteria obtained in Step Step 2., U11 with the correspondingvalue from Table 2, and V11 with the respective value from Table 3 in Equation 31. This yields
Γ11 = 0.59403. Similarly, for i = 2, . . . , 4 and j = 2, . . . , 4, Γij values can be computed fol-lowing the same procedure. The resulting factor of generalized power prioritized weightingcoefficients Γij for each q-ROFN Fij are presented in detail in Table 4.

Table 4Factor of Generalized Power Prioritized Weighting Coefficients Γij for q-ROFN in Table 1
(F/A ) A1 A2 A3 A4

F1 0.59403 0.54993 0.55826 0.60621
F2 0.87597 0.774525 0.793755 0.844155
F3 0.2839987 0.2301139 0.2734171 0.27987
F4 1.0701619 0.9877769 1.0669375 1.1046241
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Step 7. Compute the Generalized Power Prioritized Weighting Coefficients:

The generalized power prioritized weighting coefficients ηij , are calculated individually for eachq-Rung Orthopair Fuzzy number Fij (Table 1), where i = 1, 2, . . . , 4 and j = 1, 2, . . . , 4. Specif-ically, our focus is on determining the value of Γ11, with the remaining coefficients following asimilar process. Referring to Equation (24), we derive:
η11 =

Γ11∑5
i=1 Γi1

(32)
Insert the value of Γi1 (i = 1, 2, . . . , 4) from Table 4 into Equation (32). Upon calculation,Equation (32) produces Γ11 = 0.2103386. Similarly, the values of Γij can be computed for
i = 2, . . . , 4 and j = 2, . . . , 4, following the same methodology. The resulting generalizedpower prioritized weighting coefficients ηij for each q-Rung Orthopair Fuzzy number Fij aredetailed in Table 5.

Table 5Generalized Power Prioritized Weighting Coefficients Γij for q-ROFN in Table 1
(F/A ) A1 A2 A3 A4

F1 0.2103386 0.2163081 0.2073489 0.2138413
F2 0.31017 0.3046498 0.2948165 0.2977767
F3 0.1005604 0.0905124 0.1015526 0.0987245
F4 0.378931 0.3885297 0.3962819 0.3896575

Step 8. Aggregate q-Rung Orthopair Fuzzy Numbers:
Aggregate the q-ROFNs, F1j,F2j, . . . ,F4j (j = 1, 2, . . . , 4), provided in Table 1, utilizing eitherthe AO, q-ROFGPOPRYWA (Equation (25)), or q-ROFGPOPRYWG (Equation (26)). Specifically,focus on aggregating F11,F21, . . . ,F41 using the AO, q-ROFGPOPRYWA (Equation (25)), withparameter µ = 3, as follows.

q-ROFGPOPRYWA(F1,F2, . . . ,Fm) = ⊕m
i=1ηiFi[

1−min{1, (
4∑

i=1

ηi(1− α3
i )

3)1/3}

]1/3

,

[
min{1, (

4∑
i=1

ηi(β
3
i )

3)1/3}

]1/3


Substitute the values of ηi1 (i = 1, 2, . . . , 4) from Table 5, and the values of
αi1, βi1 (i = 1, 2, . . . , 4) from Table 1 into Equation (25).After computation, Equation (25) yields q-ROFGPOPRYWA(F11,F21, . . . ,F41)
=

〈
0.8510987, 0.3992658

〉. Similarly, aggregation of q-ROFNs, F1j,F2j, . . . ,F4jfor j = 2, . . . , 4 can be performed. Likewise, aggregation of q-ROFN,
F1j,F2j, . . . ,F4j (j = 1, 2, . . . , 4), as provided in Table 1, can be carried out using theAO, q-ROFGPOPRYWG (Equation (26)). The resulting aggregation values are displayedin Table 6.

Step 9. Compute the Score Value:
The scores for the aggregated information in Table 6 from Step 8. are computed using Equation(1). These calculated scores are displayed in Table 7.

301



Spectrum of operational researchVolume 3, Issue 1 (2026) 275-309
Table 6Aggregation values for q-ROFNs (Table 1) with proposed operators

Alternative q-ROFGPOPRYWA Operator q-ROFGPOPRYWG Operator
A1

〈
0.8510987, 0.3992658

〉 〈
0.8719892, 0.3305903

〉
A2

〈
0.3473038, 0.7574304

〉 〈
0.4003814, 0.6767071

〉
A3

〈
0.6373476, 0.3617282

〉 〈
0.7136214, 0.310282

〉
A4

〈
0.2770477, 0.4470214

〉 〈
0.2887968, 0.4003286

〉
Table 7Score values for aggregated information given in Table 6

Proposed Operator A1 A2 A3 A4

q-ROFGPOPRYWA 0.7259164 0.2949367 0.6378097 0.4150131
q-ROFGPOPRYWG 0.7706994 0.3618372 0.7016697 0.4442341

Step 10. Determine the ranking of alternatives:
The ranking of alternatives Aj (j = 1, 2, . . . , 4) is determined based on the score values com-puted in Step 9. Referring to Table 7, the ranking of alternatives Aj (j = 1, 2, . . . , 4) is A1 ≻
A3 ≻ A4 ≻ A2 according to both the proposed aggregation operators, q-ROFGPOPRYWA andq-ROFGPOPRYWG.

5.1 Analyzing the Sensitivity of Aggregation Operators under Fixed q and Varying µ
Parameters

The provided table (Table 8) offers a comprehensive sensitivity analysis of two proposed aggrega-tion operators, “q-ROFGPOPRYWA”and “q-ROFGPOPRYWG”, across different parameter configurations(q, a, b, µ). Each row in the tables represents a specific parameter setting, showcasing how these op-erators perform across four criteria (A1 to A4). For instance, in the setting where q = 3, a = 1, b = 0,and µ = 3, “q-ROFGPOPRYWA”achieves scores of 0.7256219 , 0.2952278 , 0.6376156 , 0.4157176 for
A1 to A4, respectively, while “q-ROFGPOPRYWG”achieves scores of 0.7708255, 0.3621088, 0.6995772,0.4448052 under the same configuration. These scores provide insights into each operator’s perfor-mance across different criteria and parameter combinations, considering weightswi = [0.2, 0.3, 0.1, 0.4](where i ranges from 1 to 4) for each criterion. The “Ranking”column in the tables offers a preferenceorder based on these scores, indicating the effectiveness of each operator under varying conditions.A higher ranking suggests better performance, providing valuable insights into the suitability of “q-ROFGPOPRYWA”and “q-ROFGPOPRYWG”for decision-making tasks. This ranking helps identify themost effective operator for different parameter settings and criteria, aiding in making informed de-cisions regarding the selection of aggregation operators. The graphical view of the sensitivity analysisis depicted in Figure 4 .
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Table 8Sensitivity analysis explored proposed aggregation operators across µ, a, b, with fixed q = 3.

q a b µ Proposed Operator Score Values Ranking
A1 A2 A3 A4

3

1 0 3 q-ROFGPOPRYWA 0.7256219 0.2952278 0.6376156 0.4157176 A1 ≻ A3 ≻ A4 ≻ A2

q-ROFGPOPRYWG 0.7708255 0.3621088 0.6995772 0.4448052 A1 ≻ A3 ≻ A4 ≻ A2

0.7 0.3 4 q-ROFGPOPRYWA 0.7135452 0.2848023 0.6261368 0.4099703 A1 ≻ A3 ≻ A4 ≻ A2

q-ROFGPOPRYWG 0.7731602 0.3753047 0.7081246 0.4466786 A1 ≻ A3 ≻ A4 ≻ A2

0.2 0.8 100 q-RLDFGPOPRYWA 0.6532524 0.1854934 0.5109691 0.3789703 A1 ≻ A3 ≻ A4 ≻ A2

q-ROFGPOPRYWG 0.8204204 0.4460693 0.792438 0.5150883 A1 ≻ A3 ≻ A4 ≻ A2

0 1 1000 q-ROFGPOPRYWA 0.9001512 0.1526421 0.7008973 0.6042772 A1 ≻ A31 ≻ A4 ≻ A2

q-ROFGPOPRYWG 0.8452495 0.1998247 0.8363701 0.3957228 A1 ≻ A3 ≻ A4 ≻ A2

Fig. 4. Scores behavior of alternatives for different µ and fixed q = 4

5.2 Analyzing the Sensitivity of Aggregation Operators under Fixed µ and Varying
q Parameters

The provided table (Table 9) and accompanying text present a sensitivity analysis of two proposedaggregation operators, “q-ROFGPOPRYWA”and “q-ROFGPOPRYWG”, across different parameter con-figurations (q, a, b) with a fixed value of µ = 4. Each row in the table represents a specific param-eter setting, and the “Score Values”columns depict the performance of the operators across fourcriteria (A1 to A4). For instance, under the setting where q = 7, a = 1, b = 0, and µ = 4, “q-ROFGPOPRYWA”achieves scores of 0.6972418, 0.278535, .6518909, 0.4035534 for A1 to A4, respec-tively, while “q-ROFGPOPRYWG”achieves scores of 0.7512792, 0.3713738, 0.7014765 and 0.4301778 un-der the same configuration. These scores provide insights into each operator’s performance across dif-ferent criteria and parameter combinations, considering weights wi = [0.2, 0.1, 0.2, 0.3, 0.2] (where
i ranges from 1 to 4) for each criterion. These scores reflect the relative performance of the opera-tors under different parameter combinations and criteria with ranking . The “Ranking”column offers apreference order based on these scores, indicating the effectiveness of each operator. A higher rank-ing suggests better performance, with operators ranked from most to least effective based on theirscores across the criteria, providing valuable insights into their suitability for decision-making tasksunder varying conditions.The graphical view sensitivity analysis is given in Figure 5
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Table 9Sensitivity analysis explored proposed aggregation operators across q, a, b, with fixed µ = 4.

µ a b q Proposed Operator Score Values Ranking
A1 A2 A3 A4

4

1 0 7 q-ROFGPOPRYWA 0.6972418 0.278535 0.6518909 0.4035534 A1 ≻ A3 ≻ A4 ≻ A2

q-ROFGPOPRYWG 0.7512792 0.3713738 0.7014765 0.4301778 A1 ≻ A3 ≻ A4 ≻ A2

0.7 0.3 25 q-ROFGPOPRYWA 0.6969732 0.2881966 0.6789159 0.4007726 A1 ≻ A3 ≻ A4 ≻ A2

q-ROFGPOPRYWG 0.7198459 0.3332042 0.7012722 0.410858 A1 ≻ A3 ≻ A4 ≻ A2

0.2 0.8 100 q-ROFGPOPRYWA 0.6998119 0.0527295 0.6955258 0.2506233 A1 ≻ A3 ≻ A4 ≻ A2

q-ROFGPOPRYWG 0.9495733 0.3093027 0.8987316 0.6498578 A1 ≻ A3 ≻ A4 ≻ A2

0 1 5000 q-ROFGPOPRYWA 0.5 0.5 0.5 0.5 A1 = A3 = A4 = A2

q-ROFGPOPRYWG 0.5 0.5 0.5 0.5 A1 = A3 = A4 = A2

Fig. 5. Scores behavior of alternatives for different q and fixed µ = 4

5.3 Comparative Evaluation of the Proposed Aggregation Operators

In this segment, we evaluate the presented model by comparing it with existing models to as-sess the effectiveness and superiority of the proposed aggregation technique. The results in Table 10indicate that the most favorable alternative among all the discussed operators is denoted as A1 af-firming the consistency and credibility of the proposed model. While both the presented and existingmodels yield identical optimal solutions for a Multiple Criteria Decision Making (MCDM) problem, theGeneralized Power Prioritized Yager Weighted operators exhibit sensitivity to extreme values. Thissensitivity enables them to capture noteworthy changes in input variables, proving beneficial in sit-uations where specific variables exert a disproportionate influence on the overall aggregation. Theintegration of power and prioritized Operators establishes a versatile framework capable of adaptingto diverse contexts and data distributions.
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Table 10Score and ranking of the aggregated q-ROFN for Aj (j = 1, . . . , 4) with q = 3 and µ = 5

Operator
Score Value

Ranking
S1 S2 S3 S4

Frank Weighted Averaging (q-ROFFWA) [7] 0.6050 0.4531 0.5482 0.4964 A1 ≻ A3 ≻ A4 ≻ A2

Frank Weighted Geometric (q-ROFFWG) [7] 0.6000 0.4428 0.5342 0.4921 A1 ≻ A3 ≻ A4 ≻ A2

Yager Weighted Averaging (Yq-ROFWA) [16] 0.1521 0.0003 0.0304 0.0000 A1 ≻ A3 ≻ A4 ≻ A2

Yager Weighted Geometric (Yq-ROFWG) [16] 0.5184 0.4373 0.5055 0.4995 A1 ≻ A3 ≻ A4 ≻ A2

Einstein Weighted Averaging (q-ROFEWA) [8] 0.8154 0.3600 0.6438 0.4894 A1 ≻ A3 ≻ A4 ≻ A2

Einstein Weighted Geometric (q-ROFEWG) [8] 0.8003 0.3287 0.6013 0.4766 A1 ≻ A3 ≻ A4 ≻ A2

Aczel-Alsina Weighted Averaging (q-ROFAAWA) [29] 0.8397 0.4160 0.7051 0.5021 A1 ≻ A3 ≻ A4 ≻ A2

Aczel-Alsina Weighted Geometric (q-ROFAAWG) [29] 0.7444 0.2251 0.5304 0.4578 A1 ≻ A3 ≻ A4 ≻ A2

Schweizer-Sklar Power Weighted Averaging (q-ROFSSWA) [40] 0.7811 0.2718 0.6199 0.4611 A1 ≻ A3 ≻ A4 ≻ A2

Schweizer-Sklar Power Weighted Geometric (q-ROFSSWG) [40] 0.8180 0.3622 0.6812 0.4798 A1 ≻ A3 ≻ A4 ≻ A2

Generalized Power Prioritized Yager Weighted Average (q-ROFGPOPRYWA) 0.7038 0.2770 0.6167 0.4069 A1 ≻ A3 ≻ A4 ≻ A2

Generalized Power Prioritized Yager Weighted Geometric (q-ROFGPOPRYWG) 0.7756 0.3861 0.7109 0.4492 A1 ≻ A3 ≻ A4 ≻ A2

6. Conclusion
This study makes a substantial contribution to the advancement of q-rung orthopair fuzzy setsby introducing Yager t-norms and t-conorms, which serve as powerful mechanisms for managing un-certainty and imprecision in complex decision-making contexts. We have systematically defined thecore operations of these aggregation tools, elucidating their underlying principles and establishing astrong theoretical foundation for their practical deployment. A central innovation of our work is thedevelopment of two novel aggregation operators—q-ROFGPOPRYWA and q-ROFGPOPRYWG—whichoffer enhanced flexibility and effectiveness in aggregating q-rung orthopair fuzzy numbers. Theseoperators significantly expand the methodological arsenal available to decision scientists and prac-titioners working in uncertain environments. fImportantly, the applicability and robustness of theproposed methods were validated through a real-world case study focused on sustainable urban de-velopment. By integrating artificial intelligence with a Multi-Criteria Decision-Making (MCDM) frame-work, we demonstrated the practical value and reliability of our Yager-based aggregation operatorsin addressing real-life challenges. In summary, this research fills a critical gap in the fuzzy set litera-ture while introducing innovative tools that have the potential to transform decision-making underuncertainty. The proposed Yager aggregation methods open new pathways for future exploration andapplication across diverse domains requiring nuanced and resilient decision-support systems.

6.1 Limitations of the Proposed Study

While this study offers meaningful insights, several limitations should be acknowledged. Firstly,the scope of the analysis may constrain its generalizability, as it emphasizes specific features of q-rung orthopair fuzzy sets and particular application domains. Certain assumptions and model sim-plifications may have reduced the ability to fully capture real-world complexities. The efficacy of theproposed methodologies is contingent upon the availability and quality of input data, which may beinconsistent or limited in some contexts. Furthermore, the algorithms introduced could present com-putational challenges, particularly in terms of processing time and resource requirements. The evalu-ation criteria employed, while relevant, may not encompass the full spectrum of factors necessary for
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comprehensive decision-making. Practical implementation might also necessitate a level of domain-specific expertise, which could hinder broader adoption. Additionally, the findings may exhibit limitedexternal validity due to their reliance on specific datasets and contextual parameters. A lack of ex-tensive comparison with alternative methodologies may obscure a clear understanding of the relativestrengths and weaknesses of the proposed approach. Lastly, the study does not fully explore futureuncertainties or ethical considerations, which may influence the applicability and societal impact ofthe proposed techniques.
6.2 Future Research Directions

Future research can build upon the current study in several promising directions. First, extend-ing Yager’s operations to encompass other types of fuzzy numbers and sets—such as intuitionistic,hesitant, or interval-valued fuzzy sets—would demonstrate their adaptability across diverse decision-making contexts. Enhancing the proposed aggregation operators to accommodate a greater num-ber of criteria, improve computational efficiency, and support hybrid frameworks could significantlybroaden their applicability. Moreover, adapting the multi-criteria decision-making (MCDM) frame-work to dynamic and real-time environments, incorporating mechanisms for advanced uncertaintyhandling, and integrating machine learning techniques would further improve decision accuracy andresponsiveness. Expanding empirical validation through diverse case studies in sectors such as health-care, finance, transportation, and environmental management would also enhance the external va-lidity and global relevance of the methodology. The development of user-friendly software tools anddecision-support systems can facilitate practical implementation, while fostering interdisciplinary col-laboration may yield novel insights, encourage cross-sector innovations, and enhance the societal im-pact of the proposed approach.
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