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Real-life scenario modeling with mathematics is very important nowadays.
Depending upon system behavior, it may also model discrete systems in
several cases. In discrete system modeling, the difference equation is one of
the well-known methodologies. However, if some uncertain factors are

involved in the discrete models, then uncertain difference equation concepts
come into play. The fuzzy difference equation is one of them. The fuzzy
difference equation is significant as it can represent variances of dependent
variables in a discrete frame under uncertainty. In this paper, a first-order
non-homogenous linear difference equation is considered under fuzzy
uncertainty, a special kind of fuzzy difference equation. Here, a well-known
fuzzy geometric approach is utilized to solve the mentioned first-order non-
homogeneous fuzzy difference equation. An application, namely a fuzzy
prescription for digoxin based on the fuzzy initial valued problem, is also
discussed in numerical illustrations as a consequence of the proposed theory.
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1. Introduction
1.1 Fuzzy set theory

Classical set theory has the limitation that the set corresponds to a characteristic function with
the values 0 and 1 representing belongingness and non-belongingness. However, it is evident from
many real-life scenarios that only these two extreme values cannot explain many grey shades
between extremities. In this context, Zadeh [1] introduced a fuzzy set to clarify the situation with a
practical and acceptable idea compared to the classical set. The membership function lies in the
interval [0, 1] in this set theory concept. The intermediate decisions of certain and certain situations
take some membership value. Furthermore, several researchers [2-7] have investigated fuzzy set
theory, fuzzy numbers, and their application in different fields of mathematics.
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1.2 Difference equation

Qualitative analysis of discrete phenomena using different equations becomes contemporary. A
difference equation is an equation that specifies the change of the variables between two periods.
The discrete dynamical phenomena are best described mathematically using the difference equation.
The difference equation, or a system of difference equations used to represent a particular dynamical
situation, comprises several coefficients, parameters, and beginning conditions.

1.3 Fuzzy difference and differential equations

The solutions provided by the clean environment frequently include errors, which makes them
describe reality more accurately than they should. We encounter these situations by incorporating
fuzzy set theory into different equations. A difference equation can be regarded as a fuzzy difference
equation in any of the below-mentioned characteristics as fuzzy numbers:

i Only the initial information,
ii.  Only the associated coefficients,
iii.  Both information and the coefficients.

Deeba et al. [8] investigated the global behavior of the first-order linear fuzzy difference equation
whereas Khastan [9] studied the existence, uniqueness, and global behavior of the solutions of the
different formulations of a fuzzy difference equation. Alamin et al. [10,11] solve analytically with
stability analysis and its applications of the fuzzy linear in-homogeneous and homogeneous models
in neutrosophic environments, respectively. Mondal et al. [12] have discussed the existence and
stability of the solution of the first-order homogeneous linear difference equation. Rahaman et al.
[13,14] solved linear difference equations by interval method and Gaussian fuzzy number. Many
researchers worked on theoretical and applications-based fuzzy equations, fuzzy difference
equations, and fuzzy differential equations in their articles (see [15-26]).

1.4 Motivations and Novelty

We have seen in the short literature history that researchers studied the fuzzy difference
equation in various ways, techniques, and perspectives. Researchers always try to find new ways or
possibilities to solve a problem and understand the merits or demerits of the discussed method by
comparing it with the previous one. The fuzzy geometric method is very useful to solve the fuzzy
differential equation problem in several cases. However, no one still uses the easy and useful
straightforward method to solve fuzzy difference equations. We have solved the linear first order in-
homogeneous fuzzy difference equation through a geometric approach and its effect on the solution
dynamics. We have solved this fuzzy initial valued difference equation by dividing it into two parts.
One is an inhomogeneous crisp problem, and another is a homogeneous, purely fuzzy initial value
problem. Also, we applied practical life problems to show the strategy's applicability with numerical
illustrations.

2. Preliminaries
2.1 Fuzzy set theory

The fuzzy set explains the ambiguous situation of belongingness through the gradation value
within the set [0,1], which may contain any one point of this interval. Whenever, in a crisp sense, the
membership value takes either 0 or 1. But logically and practically, the fuzzy set concept is more
acceptable than the classical set theory. Professor L. Zadeh gave this innovative concept [1]. We try
to clear the facts through an example stated below:

Example 1: Suppose a variety of color roses in a garden is considered a universal set, with pink
color roses as a subset, and in our perception, we choose a very deep pink colored rose as perfect.
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Among the pink roses, there may be such types of variation as very deep pink, deep pink, near about
deep pink, pink, slightly pink, and different from pink. Thus, the gradation values of the roses in the
pink color roses set take any value within [0,1] according to the perception of the observer. Table 1
describes the phenomena.

Table 1
Comparison of gradation values between fuzzy set and crisp set

Gradation values

Types of color of roses

Fuzzy Crisp
1.  Very deep pink 1 1
2. Deep pink 0.8 0
3. Near about deep pink 0.7 0
4.  Pink 0.6 0
5. Slightly pink 0.4 0
6.  Totally different from pink 0 0

Now, some definitions and conceptual results on fuzzy set theory and fuzzy numbers are given
below:

Fuzzy set: [1] In the universe of discourse X, a fuzzy set A can be defined by the order pair
(x, pz(x)), the first component is the element in X, and the second is the corresponding membership
grade.

a- level set: [27] The collection of all elements of a given fuzzy set that has a membership grade
greater than « is called a a-cut of the fuzzy set A and is denoted by 4,.

Fuzzy number (Triangular): [28] A 3- tuple number, Q = (q; q5, q3) is a triangular fuzzy number,
and its corresponding membership function is defined by

( 0 forx < q

X~ | forqu < x<q,
92 —q1

pg (x) =< 1 forx=gq,
s = % forq, < x <q3
93 — q>

\ 0 forx > q;

In geometric approach, the trapezoidal fuzzy number ¢ = (q1 92, q3) can be expressed as Q =
Qcp + 6up (certainty part + uncertainty part). The certainty part Q. is the crisp value g, where the
membership value is always one. The uncertainty fuzzy number aup =(q1— 92,0, g3 —q,) isa
triangular fuzzy number.

Hukuhara-difference [29]: A fuzzy number W is said to be a Hukuhara difference between two
fuzzy numbers § and t if it satisfies the fuzzy equation § = W + t.

3. Comparative Study on Geometric Approach for Fuzzy Problem
The geometric approach for solving fuzzy-based problems is not new. The comparative studies
between related works are given in Table 2.
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Table 2
Comparison among the existing works and contribution of this article.
Discrete or Application or
Sl. No. Paper details Main topic Continuous theoretical
system contribution
Solution of linear differential
1. Gasilov et al. [30] equations with fuzzy boundary Continuous Theoretical
values
Solution of boundary value Application and
2. Gasilov et al. [31] problem with fuzzy forcing Continuous theoretical both
function
3. Gasilov et al. [32] Solut|o.n of ﬂ.JZZY <'j|?°ferent|a| Continuous Theoretical
equation with initial value
Solution of linear differential
4. Gasilov et al. [33] equations with fuzzy boundary Continuous Theoretical
values
luti ff li
5. Gasilov et al. [34] 50 utlon.o uzz_y inear systems Continuous Theoretical
of differential equation
6. Gasilov et al. [35] Solving fuzzy Ilngar systems of Continuous Theoretical
equation
Solving fuzzy difference .
. L ) . Appl
7. This paper equation (in-homogeneous first Discrete pplication and

. theoretical both
order linear)

4. Geometric approach for the fuzzy difference equation
The geometric method for solving fuzzy problems is not new [30-35]. Here, the approach is
applied to solving fuzzy difference equations.
Let us consider an initial value problem consisting of a first-order linear in-homogeneous
difference equation with a constant coefficient in which the initial value is a fuzzy number as
{un+1 —au, = g(n)
Un=0 = Up
Here g(n) is a crisp function of the iteration number n.
The initial value U, is a triangular fuzzy number and can be expressed as U, = 1w, + 4i,, where
g and L, are crisp and triangular fuzzy numbers, respectively.
By the concept of geometric approach, we separate the problem (1) in the following way:
(a) Crisp in-homogeneous initial valued difference equation:
{un+1 —au, = g(n) (2)
Up=0 = U

(1)

and
(b) Homogeneous fuzzy initial valued difference equation:
{unﬂ —au, =0
Un=g = Uy

(3)
Therefore, the solution of equation (1) is @i, = “u + /21, where the crisp solutions “u of

equation (2) can be obtained easily, and the fuzzy solution of equation (3) is fflﬁ = a"l,. The
coefficient of equation (3) is regarded as a positive crisp quantity.

Note 4.1:

(i) a™ is the only independent solution of (3). Therefore, the fuzzy solution fﬁﬁ = {a"cy: cy € Uy}
and its membership function ,ufzﬁ(a"co) = ug,(co).
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(ii) The initial value 4, is given either as a triangular fuzzy number or in a parametric

representation of fuzzy number, the solution is always ff’lﬁ = a™i,.

5. Numerical illustration
Now, we investigate the solution of a first-order linear in-homogeneous difference equation
through the mentioned method.
Example 2: Solve the fuzzy initial valued difference equation
Upsp — 2Up =M
{un=0 =1 =(2,3,4)
We express the initial value i, = (2, 3, 4) =3 +(—1,0,1) thatisin terms of a certain and
purely uncertain portion.
Now, we solve the crisp, in-homogeneous problem
Upt1 — 2Up =1
{un=0=u0=3 (3)
The auxiliary equation of the corresponding homogeneous problemis A — 2 = 0. Therefore, A =
2. The complementary part of the solution is k2™, k is an arbitrary constant to be found using the
initial condition.
The particular integral of the problem (5) is

: (n), E is the shift operator

(4)

(E-2)
=—(1-A)"1(n),asE =1+ A, A being the difference operator.

=—-(n+1)

So, Pu=k2" - (n+1) (6)
If we put the initial information as uy = 3, the obtained result should be

Pu=4x2"—(n+1) (7)
The solution of the homogeneous fuzzy initial valued difference equation
{ Upyr — 2Up =0 (8)
Up—o = Uy = (—1,0,1)
As the imprecise part only fﬁﬁ =2"(-1,0,1).
Finally, the solution of the problem is
i, = Pu+'Pi=4x2"—(n+1)+2"(-1,0,1)

=2"(3,4,5) - (n+1) (10)
In a- cut representation of the equation (10), we have,
[uz (@), uf(@)] = 2"[3+ a,5 —a] — (n + 1) (11)

The solution of the equation (7) and equation (11) are given in Figures 1, 2, 3, and 4, for a =
0,0.5,0.8, and 1, respectively.
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Fig.4. Solution of equation (7) and equation (11) fora = 1

In Figures 1-4, the blue line represents the crisp solution of the corresponding problem, and the
dashed lines indicate a- cuts corresponding to the uncertain fuzzy solution. Both the fuzzy and crisp
solutions are unbounded. If the uncertainty tends to zero, the corresponding solution approaches
towards a crisp solution.

6. Application of the theory for Prescription for Digoxin [10]

It is to be mentioned that digoxin is a medication that deals with cardiac problems. Here, the
fuzzy difference equation considers the gradual depletion of the digoxin level in blood and
maintaining its acceptable level for safe and effective livelihood. For mathematical model
construction, we consider a hypothetical phenomenon as follows: Let us suppose given a prescription
of daily drug dosage is about 0.1 and 0.5, part of the drug dosage remains in the system at the end
of the period. Furthermore, initial concentration is supposed to be given by triangular fuzzy data like
D,,—o = (0.25,0.3,0.40). So, the governing mathematical model can be represented by following the
fuzzy difference equation with initial information:

{~Dn+1 = 0.5D, + 0.1 (12)
D,,—o = (0.25,0.3,0.40)

The initial value Dy = 0.3 + (—0.05,0,0.1)

Applying the proposed approach and following the similar computation procedure of the
numerical example 5.1, we have the solution of equation (12) as

D, =%D+'PD =01 x27"+0.2+27"(—0.05,0,0.1)

or,D,, = 0.2 + 27™(0.05,0.1,0.2) (13)
Therefore, the a- cut representation of the equation (13) is
[DE(a), DR(a)] = 0.2 + 27"[0.05 + 0.05a, 0.2 — 0.1a] (14)

Where a € [0,1]. The solution of equation (14) is given in Figures 5 and 6, for « = 0 and 0.85,
respectively. Furthermore, the solution of equation (14) is given in Figures 7 and 8, forn = 8 and 12,
respectively.
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Figures 5 and 6 reflect those three types of solutions, one for crisp solution and another two
branches are a-cut of fuzzy solution of equation (12) are convergent and converges to 0.2, which is
the integral of the crisp inhomogeneous problem of (12). Figures 7 and 8 are the triangular fuzzy
solution of equation (13) forn = 8 and n = 12, respectively. For larger n, the solution corresponding
toa = 1tendsto0.2.

6. Conclusion and future research scope

Difference equations play a significant role in discrete dynamical systems. Uncertainty is also an
integral part of many real physical phenomena. Fuzzy difference equations are crucial for modeling
discrete systems where uncertainty, vagueness, or imprecision is dominant. It applies in fields like
economics, engineering, biology, management and social sciences. By incorporating fuzzy sets
concepts, these difference equations allow for more accurate illustration and estimate of solutions
of a particular model in discrete systems. This framework gives a decision-making concept under
uncertainty, provides sensitivity analysis, and extends the classical difference equation theories,
contributing to practical applications and theoretical advancements for understanding complex
problems. In this paper, we have solved a linear order non-homogenous difference equation under
a fuzzy setting. We have utilized a geometric approach for solving the fuzzy difference equation,
which may be regarded as a new approach in the theory of difference equations under fuzzy
impreciseness. The proposed theory is used in the prescription of digoxin problems, and it is observed
that the approaches may be applied as mathematical tools to deal with similar situations.

The theory manifested in this paper can be extended to the difference equation system under
fuzzy-based uncertainty, which incurs more complexities. Further theoretical development may
include studying stability, chaos, and bifurcation with high-dimensional or nonlinear systems in fuzzy
difference equation systems. Furthermore, the discrete system can follow the proposed approach in
imprecise environments, including intuitionistic fuzzy, neutrosophic, and type 2 interval
environments. The future research scope for fuzzy difference equations as application is broad and
very promising, with potential progressions in several application areas like population dynamics,
climate modeling, network dynamics, and financial risk management problems.
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